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ABSTRACT

It has been recognized that snowmelt models developed in the past 50
years do not fully meet current prediction requirements. Part of the reason is '
because either they do not represent the physics involved in the snowmelt
process or they do not reflect the spatial dynamics of this process. Most of the
physics-based distributed models for catchment scale are based on point
location equations. The hypothesis behind this study is that physically-based
spatial models describe the snowmelt dynamics over an area better than
distributed, point location, physics-based models.

As a first step, energy and mass continuity equations that govern the
snowmelt dynamics at a point location were averaged over the snowpack
depth, resulting in depth averaged equations (DAE). In this averaging, it is
assumed that the snowpack has two layers.

Then, the point location DAE were averaged over the snowcover area.
In order to develop the areally averaged equations of the snowmelt physics, we
made the fundamental assumption that snowmelt process was spatially ergodic.
Furthermore, the snow temperature and the snow density were considered
stochastic variables. The expectation of the terms in the areally averaged
snowmelt equations were obtained through Taylor series expansion. Only the
first two moments of the series were considered. A numerical solution scheme
(Runge-Kutta) was then applied in order to solve the resulting system of
ordinary differential equations. This equation system was solved for the areal
averaged mean and variance of snow temperature and snow density and for
the areal mean of snowmelt. | '

The validation of the developed model was achieved by using Scott
Valley (Siskiyou County, California) snowmelt and meteorological data. The
observed areal averaged snowmelt data were simulated with the developed
model. The performance of the model in simulating the observed data was quite
satisfactory. The methodology introduced in this study can be a promising tool
for describing other spatial hydrologic processes besides snowmelt.
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CHAPTER L.

1. INTRODUCTION

Snow constitutes an important part of the water resources in many
countries. Because it accumulates during the winter and melts in the spring, it
is a strategic resource for irrigated agriculture. Therefore, it is critical to
have accurate runoff estimates. Snowmelt runoff estimation is also needed for
flood warning, reservoir management, and hydroelectricity power planning.

A variety of models have been developed in the past 50 years as a
result of the operational needs for forecast. It is now recognized that these
models do not fully meet current prediction requirements. Bloschl etal. (1991)
pointed out, that most of these models are spatially lumped and hence, they do
not represent the underlying physical processes (WMO, 1986). When these
models are calibrated to a catchment with long observational records, they
generally produce good results. However, these models do not work well in
applications such as ungauged catchments, evaluation of land use impacts,
climate change investigations, or extreme event simulations. These situations
require realistic, physics-based, spatially distributed models.

Spatial representation of the snow cover is at the present a matter of
discussion. Although the physics of the snow cover at a point scale is well
understood (Anderson, 1976; Dunne et al., 1976; Male and Gray, 1981; Morris,
1983: Kondo and Yamazaki, 1990) very few studies deal with spatially
distributed snowmelt models. This observation was made by Dozier (1987) who
emphasized the need for research in the area of spatially distributed models.

The lack of a methodology that represents spatially the physical
processes occurring in the snow cover, has lead to a scale related problem. In
order to simulate runoff, the snowmelt routines have to be integrated with
other processes in a more general hydrologic model. However, conceptual
difficulties are found in matching processes that are physically described at
different scales. This becomes a critical issue in climate change investigations
when land surface-atmosphere interactions are modeled. Wood (1991) points
this out very clearly:



"The inadequate representation reflects the recognition that
the well-known physical relationships, which are well
described at small scales, result in different relationships
when presented at the scale used in climate models.
Understanding this transition in the mathematical
relationships with increased space-time scales appears to be
very difficult”

From another field: satellite technology is attempting to provide
direct observations of snow properties such as water equivalent, snow depth
and snow cover area . These direct observations can be used to avoid important
problems in the mathematical modeling of snow cover. However, passive
microwave observations of snow cover, that is weather independent, have not
been sufficient to break through a barrier; the size of the "pixel" representing
the domain of influence is of the order of 100 km?2

A combination of low and high frequency observations in the
microwave range can be used to estimate the snow water equivalent and snow
depth. However, estimations of snow water equivalent require a priori
information about grain size. Similarly, estimation of snow depth would
require a priori knowledge of snow density. But at a pixel scale, estimation of
grain size and snow density for the snow cover is subject to many
uncertainties.

Vegetation cover is an additional complicating factor. According to
Choudhury (1991) there could be errors in the estimated snow water
equivalent from multifrequency microwave data originated from grain size
and vegetation; the magnitude of these errors is uncertain.

It is clear from the above discussion that snowmelt estimations still
need to be based on mathematical modeling. In addition, present needs require
that these models be physics-based, spatially distributed, and if possible, scale
independent. The approach presented in this dissertation is a contribution to
these needs and to the understanding of the snowmelt processes at varying
spatial scales.



1.2. SNOWMELT MODELS

To visualize the limitations of the existing methodologies for
simulating spatially varying snow processes, it is convenient to discuss some
of the assumptions in which the current models are based.

A large number of methods have evolved for forecasting purposes.
Each makes use of empirical formulae and various approximations to describe
melt, transmission and runoff processes. Some authors classified the models
based on their applications as operational or research-oriented. Other
classifications are based on the method of estimating the energy flux to snow.
For our purpose, it is convenient to discuss the contrast between point location
models and catchment models. \

1.2.1 POINT LOCATION MODELS

The simplest model of all is the empirically based regression model
in which linear equations relate input and output variables. The water
production at the base of the pack is usually expressed as a function of one or
more meteorological variables. In these models the internal physical process
and boundary fluxes are not considered in any way but the general nature of
the governing physical processes is taken into account by choosing the input
variables. According to Zuzel and Cox (1975), air temperature is the best choice
if only one variable is used. The best combination of variables is vapor
pressure, wind velocity and net radiation. '

Regression models are in common usage, and references to them can
be found everywhere. However, a large record of data of the study area is
required to establish an accurate statistical relationship. They are also site
specific. In order to produce snowmelt models which are more widely
applicable it is necessary to add more detail of the physical processes involved
(Morris, 1985). '

Conceptual models try to represent all the physical processes
occurring within the snowpack. These models are classified by the degree of
complexity of the physical description. In general the equations relate the

internal thermodynamics processes with the energy exchanged across the



boundaries (energy continuity). In a similar way, internal mass transport is
related to mass fluxes exchanged with the surroundings.

The equations can be integrated over the snow depth resulting in a
lumped conceptual model. These models deal only with the mean properties of
the snowpack at a point location of the snow cover. Two important assumptions
are usually made in these models:

1. Snow exists in two possible states depending upon its temperature:
T=0°C and T<0°C, for wet isothermal conditions and for dry snow respectively.
Wet snow can hold a certain amount of water in the pores before flow begins.

2. Melt water plus rainfall less evaporation, is instantly released at
the bottom of the pack.

Lumped equations may also be applied to different layers of the pack
when vertical differentiation of snow layers is required. A classical example is
the model developed by Anderson (1976) in which the energy balance
equation for each layer is expressed in implicit finite-difference form.

The distributed (in depth) models are based on the same mass and
energy equations. However, they consider the details of the process occurring
within the pack. An equation of state or constitutive relation is needed for the
solution of the system. One possibility is to adopt assumptions 1 and 2,
mentioned above, and find a solution to the energy equation under dry snow
hypothesis (no water, T< 09C) and a solution to the mass equation for wet snow
(isothermal). Examples of these models are given by Yen (1962), Colbeck
(1972), Wankiewicz (1978), Obled and Rose (1977). The problem with this
approach is that it does not deal with the transition between the two equations,
especially when the wet front moves through time and space.

Morris (1983) proposed a model based on Colbeck's (1975) analysis of
thermodynamics in which there is no transition between cold and ripe snow.

It assumes a single phase in which the water content 0, and capillary tension
, are associated by a given empirical "characteristic" equation. A second
empirical equation relates capillary tension with grain size. Grain diameter
increases with the amount of water that freezes. A model with a constant
number and equal size of ice grains is assumed. A relation between snow

temperature T, and ¢ must be specified to close the system. This last

relationship is expressed by two equations specified for wet and dry snow



conditions. The velocity of the water in the ice matrix is given by Darcy's Law
in which hydraulic conductivity is a function of grain diameter, capillary
tension, water content and density. This model is part of the Systeme
Hydrologique Europeen ( Abbot et al, 19878) that simulates the entire land
phase of the hydrological cycle.

The energy input at the upper boundary in both lumped or
distributed representation can be estimated in many different ways. There are
several different models based upon which components of the energy input
are measured and upon which technique is used to estimate the other
components.

The simplest model uses an index equation for the energy captured
by the snowpack. This model is based on one or more variables that reflect the
energy budget of the pack. Air temperature is the most commonly used
parameter because it is a reasonably good measure of energy flux. At the same
time, it is easy to measure, extrapolate and forecast. A classical example of this
family of models is the degree-day factor model that uses the product of
number of days and daily average air temperature (Martinec and Rango, 1986)

More accurate results are obtained when the energy input at the
upper boundary is éstimated by accounting for each term in the energy
balance. This constitutes the classical energy budget model that will be detailed
in the next chapter. Temperature index models do not necessarily reflect the
short wave incoming radiation and the turbulent mechanism of energy
transfer to the atmosphere. Consequently, energy budget models give better
results when they are applied to an open environment with varying climatic
conditions during snowmelt. In places with forests, wind and solar radiation
are attenuated. Therefore, infrared waves are dominant in the exchange of
energy at the snow-air boundary. In these particular cases, a very high
correlation is found between energy exchanged and temperature. These
circumstances favor the use of temperature index models, as pointed out by
Anderson (1976) . The choice between these two estimation techniques is
usually a matter of data availability. When enough meteorological information
is available, the energy budget method appears to be much more precise.

Point location lumped and multilayer models have been investigated
and compared in many studies (Obled and Rosse, 1977; Bauwens, 1988; Bloschl
and Kirnbauer, 1991). Both models perform adequately during melt conditions.



However, in situations dominated by prolonged frost and freeze-thaw cycles,
the multilayer models produce better results.

In general, physics based point location models produce accurate
estimates of snowmelt, snow temperature or snow depth. These models have
been usually tested in small experimental plots or under laboratory conditions.
However, less accurate results are obtained when these models are applied to a
hillslope or a basin. At this scale of application, the established point location
physical relationships are not valid anymore.

1.2.2. CATCHMENT MODELS

Catchment models are classified in the same way as point location
models: regression type, conceptual lumped and conceptual distributed (over
the area). Regression models are subject to same restrictions as the analogous
point location models, and are not of interest in this study.

Morris(1985), pointed out that many of the equations used in basin
scale models have the same form as those used in point location models. The
difference is that catchment models use mean areal inputs and, there is a
general belief, that they give mean areal results. However, they do not. In
these models, the physical relationships among point variables are assumed to
remain the same when they are applied to spatially averaged variables.

Lumped and distributed (in area) catchment snowmelt models are
both based on point location physics. The mean value of snowmelt for the
whole catchment can be estimated by a lumped model or separate values of
snowmelt may by calculated for different zones. In either case the aim of the
model is to predict average behavior of the snowmelt over an area that is
larger than the small plots used to test the point models.

Consequently, up to the present catchment models have represented
point location dynamics of snow processes. They are applied to one or more
locations in the basin which makes the difference between lumped and
distributed. These locations are represented by mean areal (or spatial) values.

One problem with the distributed approach is that a large amount of
information must be available in the study area. This type of model, based on
physics of the process at a point location is validated in small plots or
laboratory scale experiments. Therefore, the grid size of the application has to
be the smallest possible. Accordingly, average spatial data have to be provided



for each of these "plot" size partitions, which is virtually impossible in most
cases. An important line of hydrological models attempts to solve this problem
by parameterizing the required inputs. Input variables are expressed as
functions of other parameters for which "continuos" spatial data are provided.
Thus, data from GIS, satellite images, aerial photographic patterns and remote
sensing can provide detailed data of topography, snow cover area, aspect, slope
and vegetation. A distributed model following this line was presented by
Bloschl et al. (1991).

However, difficulty is found in matching the scale of the input
values and the scale at which the physical process are described. Additionally,
the parameterization is achieved usihg the data available, and is often not very
faithful to the physical representation of the processes, which may be
misleading.

The sécond problem is a conceptual one. There are important

implicit assumptions in using point location models with mean areal values.
* For the sake of clarity, one can hypothesize that the output dependent variable
X is given by the input variables Y and Z accordihg to the point model
relationship (1):

X=YZ+Y? (1)
A spatial averaging (indicated by brackets) over a fixed area will lead to:
<X>= <Y> <Z> + Cov (Y,Z) +<Y>? + Var(Y) (2)

In order to apply the point equation (1) to an area using the mean areal values
<Y> and <Z> we have to neglect the covariance and variance terms in (2). If the
covariance term is zero we assume that there is no interaction, or that there is
independence between Y and Z. If the variance is zero we assume no spatial
variability of Y. However, neither one of these assumptions are true for
variables describing most hydrologic processes. These assumptions are
potential sources of errors. Therefore, even knowing the mean input values
corresponding to an area, there is an error involved in the procedure when
point location models are used for spatial estimations. Calibration of this type
of models is usually achieved by adjusting one or more physical parameters in



order to match observed data. This may lead to parameter values adjusted to
compensate for "scale" errors, e.g., disregarding variance and covariance,
distorting the physical meaning of these parameters.

Additionally, we can expect different values for the variance and
covariance terms for the different sizes of the area represented. In a dynamic
model values will also change with time. That may be a reason why models
calibrated to a certain scale have to be recalibrated when the size of the area
(or time scale) is changed.

Our research is anchored on the hypothesis that these variance and
covariance terms exemplified in equation (2) can not be ignored in a spatial
formulation of snowmelt physics.

The problem of scale is also present in other disciplines. Non-linear
relationships that govern point scale models are usually applied to large
control volumes. However, at changing spatial scales, variables do not

associate in the same way as they do in the point location physics case.
1.3. AIM OF THE DISSERTATION

The purpose of this dissertation is to develop a physics based spatial
representation of the processes occurring in the snow cover. The model can be
used to simulate the mean spatial snowmelt produced in a snow covered area.

The emphasis of our study is on the spatial averaging procedure of
point location equations. Less attention is given to the parameterization and
parameter values, particularly in the energy flux estimations. We use
parameter values reported in the literature. In any case these elements can be
changed without altering the final structure.

The procedure used is adequate for use in any other field. Other
hydrological processes can be spatially averaged if the physical relationships
at a point location are well known.

1.4. ORGANIZATION OF THE DISSERTATION

Chapter I discusses the limitations in current snowmelt models for
representing the spatially varying dynamics that take place in the snow
cover. The developed spatially averaged snowmelt model, the objective of our
research, is presented in the framework of present needs.
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Chapter II describes the point location physics of the snowmelt
process. The first part deals with the energy exchanged by the snowpack, the
nature of the fluxes, and estimation techniques. The second part describes the
processes that take place within the snowpack. The main properties and
parameters involved in the melt dynamics are also discussed. An expression
for energy budget estimation is derived and is also included.

In Chapter III the point location equations that govern the energy
and mass fluxes are described. Then, these equations are integrated over the
snow depth in order to obtain depth averaged equations (DAE). In order to
integrate the point equations, an active layer model is adopted in which a dry
and a wet portion of the pack are considered.

In Chapter IV, the point location DAE are averaged over the snow
cover area obtaining the spatially averaged expression that governs the
processes occurring in the snow cover under ergodicity assumptions. This was
accomplished by considering snow temperature and snow density as stochastic
spatial variables. A moment solution technique is applied, leading to a
deterministic ordinary differential equation system. Then, the procedure used
to solve the system of ordinary differential equations is presented.

In Chapter V, the validation of the developed model, based primarily
on the data from the Scott Valley Basin area, is presented . Several tests are
performed in order to evaluate the performance of the model as a point
location model and as a spatially averaged model. As a point location model, the
results are compared with observed data at the Scott Mountain site and with
results from another model which was also applied to the same location. The
results of our spatially averaged model are compared with observed areal
average snowmelt. Plots showing the good performance of the developed
model, are also included.

In Chapter VI, several conclusions about the model performance are
presented. Additionally, suggestions for future work are formulated, based on
the results obtained and on inferences drawn from the research.

11



CHAPTER II
2. PHYSICS OF SNOWMELT

The snowmelt is governed by the energy transferred by radiation, convection »
and conduction. Part of the convection of heat is caused by the mass fluxes
transported across the boundaries. These mass fluxes may be in either solid,
liquid or vapor phases. According to Male (1980), the energy balance in a
control volume takes the form:

dc}tl=2(mh)k+2Qk (2.1)
k k

On the left hand side (LHS) of (2.1), d_dltl is the change in the internal energy

of a pack. The distribution of the internal energy is controlled by the thermal
properties of the snow and by the phase changes that take place within the
pack, inducing the transfer of mass and energy. However, difficulties have
been found in describing the transport processes in a medium whose structure
is in a permanent state of change.

The right hand side (RHS) of (2.1) refers to the energy exchange with

the surroundings. 2 (mh ) is the energy transferred due to mass exchange
k

of each phase k where h is the specific enthalpy of each phase determined by

the temperature. 2 Q is the energy flux due to radiation, sensible and latent
k

heat transfer (convection) and heat transfer from lower layers.

The first part of this chapter is reserved for the description of the
energy fluxes transferred through the boundaries of the snowpack. Since
these fluxes are treated in detail in the literature, only a brief description of
each of them will be given here in order to obtain a simplified mathematical
expression for the energy balance. This simplification will allow us to
accomplish the spatial average of the snowmelt physics.

The second part is reserved for the discussion of the thermal and
physical properties of the snowpack and how these propérties relate to the
internal structure of the snow (i.e, by the shape and disposition of the grains).

12



2.1. SNOW COVER ENERGY EXCHANGE A

The actual heat expenditure M of melting snow can be determined by
the energy balance applied to a unit area of the snow cover limited by the air
and soil interfaces and may be written as:

M=H+LE +sw+ Lw + Qg + Qp - dU/dt : (2.2)

in which terms are given in cal/cm2. H is the heat flux exchange with the
atmosphere by turbulent convection; LE is the heat flux induced by
evaporation/condensation; sw is the short wave radiant heat flux; Lw is the
long wave portion of the radiant heat flux exchange; Qg represents the flux
exchange with the soil; Qp is the heat flux convected across the upper
boundary by the rain, and dU/dt, already defined, is the rate of change of
internal energy per unit area of snow cover. Depending on the condition of
the heat exchange and the state of the snow cover, either the temperature will
change within it, or the snow will melt, with expenditure of quantities M and
du/dt.

Male and Gray (1981) showed the extent of the various energy fluxes
during the snowmelt period on clear days at Bad Lake, where there was no
vegetation above the snow cover (Table 2.1).

Date SW Lw H LE Qg
11-4-75 194 -15A1 4.4 2042
Y12-475 230  -202 18.6 0.6 -0.5
14-4-75 294 2225 0.3 9.43  _0.09
17-3-76 110  -107  43.7 13.2 1.5
27-3-76 172 _184  36.3 -5 5.6
28-3-76 186 -170 1.6 -4.8 -2.6
29-3-76 217 -182 12,7 -143° 43

Table 2.1 Daily Energy Flux Transfer (cal/cm2)
at Bad Lake, Saskatchewan.
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The heat sources enumerated above have qualitatively different
effects on the snow cover. Solar radiation sw may penetrate at a perceptible
rate to a depth of 30-70 cm heating or melting the snow. Long wave radiation
exchange with the atmosphere is marked by the emission of a flux of thermal
radiation controlled by the snow surface temperature, and by the absorption
of a flux of atmospheric counter radiation at the uppermost layer of the
snowpack.

Similar to Lw, the heat flux exchange due to turbulent convection H,
and condensation-evaporation LE, act only directly on the uppermost snow
layer or active layer. As a result, the heat received on the snow surface has to
be transferred to deeper layers by conduction through the snowpack. There is
a great difference between the rate at which heat is transmitted depending on
whether it is by conduction or by radiation. While the later is practically
instantaneous, the transmission of the former may take hours. Consequently,
heat conduction by snow can be viewed as a kind of regulator of the fluxes Lw,
H, LE. This is because the absolute values of these fluxes depend largely on the
temperature of the active surface of snow.

It can be said that except for the short wave radiant flux, the surface
temperature of snow is critically important for determining all of the other

sources of energy that contribute to snowmelt (Kuz'min 1961).
2.2.1. RADIANT ENERGY EXCHANGE

Radiation is the transfer of energy by the rapid oscillation of the
magnetic field. All bodies possessing energy (T> O K) emit radiation in
proportion to their absolute temperature following the Stefan-Boltzmann Law.
The relation between the amount of radiation and its wavelength is given by
the Planck's Law.

The sun- earth system can be characterized by the different
temperatures prevailing in each component. Typical wavelengths for solar

radiation (6000 K) extend from 0.15 um (ultra-violet) to 3.0 um (near infra-

red), whereas the earth-atmosphere system (~300 K) wavelengths extend from
3.0 to 100um. In fact, the difference between the two radiation regimes is very

distinct because 99% of the total energy emitted by the two planets lies within
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these limits. On this basis atmospheric scientists have designated these two

wavelength ranges as short-wave, or solar radiation, and long-wave radiation.
2.2.1.1. SOLAR RADIATION, sw

Snow and ice have characteristics that allow some transmission of
short wave radiation, meaning that incident radiation can be transmitted,
reflected, or absorbed within the snowpack. This penetration of radiation has =
little effect on deep packs, but may affect the melting process in a shallow
SNOW Cover.
The decay of the flux with penetration into the snow follows an
exponential curve so that the amount of short wave radiation §; reaching any
depth z is expressed as:

S;=8p €22 (2.3)

where Sy is the incident short wave radiation absorbed on the top of the
snowpack and a is the extinction coefficient (m-1). Equation (2.3) is known as
Beer's Law and is applicable only to the transmission of individual

wavelengths in 2 homogeneous medium, but it has been used with success for
fairly wide wave bands in snowmelt applications. '

The magnitude of the extinction coefficient "a" depends on factors
such as wavelength, size of particles, snow density and impurities. The long
wave portion is quickly absorbed, but the short-wave radiation penetrates to
much greater depth. Values ranging from 10-70 cm of penetration have been
reported by investigators based on experiments performed under different
snow conditions. Manz (1974) has shown that the radiation penetration process
is very sensitive to impurities such as dust and organic matter.

Integrating equation (2.3) over the snow depth D and considering
only the short-wave portion that is not reflected by the snow surface, the
amount of short-wave radiant energy captured by the snowpack can be
expressed as:

sw=(l-a)S(l-e2D) (2.4)
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where o is the albedo and S is the incoming short wave radiation at the
ground level that will be discussed later.

Albedo is the ratio of the reflected radiation to the incident radiation.
This reflective property of the snow depends on the wavelength A of the
incident radiation. However, the usual approach is to define it as the
integrated reflectance of light over the short wavelength spectrum:

A2 =
f —~1(M)H() dA

gathl (2.5)

A2
j I(A) dA
Al

where r(}) and I(A) are the reflected and incident monochromatic intensities,
respectively. The mean reflectance or albedo governs the amount of radiant
energy absorbed by a snow cover and hence it is important in determining the
rate of melting. The albedo of snow may vary from 0.95 for compact, dry and
clean snow to 0.30 for dirty saturated snow,

Due to the penetration of the short-wave radiation into the snow, the
albedo is the result of both the internal structure of the pack contributing to
the reflection and the surface snow layer reflectivity. It has been recognized
by Mellor (1977) who reviewed and compared different experimental results,
that reflectance decreases with increasing wavelengths, that wet snow is less
reflective than dry snow, and that albedo decreases with the age of snow.
However, an analytical approach that relates all of these factors to the
variation of the snow albedo has not yet been found. Expressions that relate
albedo to the square root of grain size have been reported by Bohren and
Barkstron (1974), Anderson (1976) and Dozier, et al. (1987). Estimation of albedo
from density was proposed by Anderson (1976) who empirically related grain
size to snow density.

The decay of albedo during the melting period is a result of the
increases in grain size and age of the snow. Kondo and Yamazaki (1990)
proposed an exponential decay of albedo from the moment of the snowfall in
which a maximum value for the albedo «(0) is assumed:




a(n) = a(min) + [o(0) - o(min)] e(-0/k) (2.6)

where n is the time in days, «(min) is the converged value of albedo, and k is a

parameter for the rate of decrease.
2.2.1.1.1. INCOMING SHORT WAVE RADIATION, S |

Short wave radiation reaching the earth surface has two components:
a direct beam component and a diffused component scattered by the
atmosphere, but with the main flux coming from the direction of the sun.

The direct solar radiation is attenuated as it passes through the
atmosphere by absorption and scattering processes. This attenuation is due to
three factors: molecular scattering, scattering by large particles and selective
absorption. Scattering by large particles such as dust, liquid and solid water

causes more attenuation than molecular scattering (Rayleigh scattering).
Direct radiation is absorbed by ozone in wavelengths from 0.20 to 0.29 pum and

by oxygen in wavelengths shorter than 0.20 pm. The attenuation suffered by
short wave radiation is proportional to the mass of air through which the rays
have to pass.

Garnier and Ohmura (1970) have presented an expression for clear
sky radiation Id, falling upon a slope as:

h:%j P™ cos (XAS.)dH (2:7)
r ,

The value Iy is related to the mean distance r between earth and sun and is
called solar constant. r is the sun-earth distance expressed in terms of the
mean terrestrial orbital distance. Obled and Harder (1979) found an
approximation for r2 as function of the day of the year d,:

2 =12 (0.01676 cos (7 -0.0172615 (dy-3)) +1)?

The correction factor P™ accounts for the attenuation of the solar
radiation in the atmosphere. P is the mean transmissivity of the atmosphere
along the zenith path and m is the optical air mass which is the ratio of the
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distance sun's ray travel through the atmosphere to the depth of the
atmosphere along the zenith path.
The term cos ( XAS ) is the projection of the sun's rays unit vector on

the slope. X is the unit vector normal to the plane of the slope and § is the unit
vector showing the sun's position. The vector product is indicated by  A. His
the hour angle measured from solar noon, the integral taken over the
duration of the sunlight on the slope.

The sun position S, can be expressed as function of latitude, day of
the year and hour angle by applying spherical trigonometric relationships.
Similarly, X may be related to slope and aspect..

Lately, models that give a better estimation of the attenuation
process in the atmosphere have been developed by Suckling and Hay (1976)
and Dozier (1979). In these models, separate transmission functions are defined
for each atmospheric component such as ozone, water vapor, oxygen, carbon
dioxide, methane and nitrous oxide.

Diffuse or sky radiation is that portion of the solar radiation that
reaches the earth's surface after having been scattered by molecules and
suspended particles in the atmosphere. In cloudy conditions it also includes
the portion of the short wave radiation which is reflected by the clouds. It is
the incoming short wave radiation in shade. Before sunrise and after sunset,
all short wave radiation is in diffused form. The ratio of diffuse to total
incoming short wave radiation varies daily, seasonally, and with the latitude.
In mid latitudes it constitutes 30-40% of the total incoming solar radiation.
Cloudiness greatly increases the ratio of diffuse to total solar radiation.
Estimation of Do, the diffuse radiation flux on a horizontal surface under
cloudless and isotropic conditions, is given by the expression presented by
List (1968):

Dy =0.5((1-aw-29)L-1q) (2.8)

where:
a,, is the radiation absorbed by water vapor (approx. 7%)

ag is the radiation absorbed by ozone (approx. 2%)
I; extraterrestrial radiation on a horizontal surface

The radiation I, , is calculated by:
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A =% f cos zs dH (2.9)

I

where z, is the sun zenith distance, which can be written as a function of

latitude, day and hour angle. The factor 0.5 in (2.8) is based on the assumption

that half of the direct solar beam is scattered toward the surface and half is

scattered away from it. To use this model it is necessary to estimate or measure -
the total short wave received on a horizontal surface.

A different method, not based on the estimation of diffuse radiation
as a part of the total radiation, was presented by Dozier (1979). The radiation
scattered initially out of the beam is estimated by wavelength-dependent
coefficients for aerosol, Rayleigh scattering, and for ozone and water vapor
absorption. A requirement in this model is information on the distribution of
each component with altitude, which is not often available.

The diffuse sky radiation on a horizontal plane Dy, is subjected to
correction due to three different effects: the slope of the terrain, the portion
of the overlying hemisphere that is visible to the point and the anisotropy of
the diffuse radiation. The view factor is a correction factor for ~ Dg ranging
from O to 1, that includes these three effects and was presented by Dozier, et
al.(1987) as:

2% He
Vyg= I I M4 (6,0) sin 6 cos 65 d6 do (2.10)
0 0

where Mg (8,0) accounts for the anisotropy for any azimuth direction ¢ and
for any horizon angle H,, as defined by Dozier. The terrain point is

characterized by its solar incidence angle 8, and aspect 8 .
Diffuse radiation is also received from the obscured part of the sky
dome by reflection from the surrounding terrain.

D;=(1-Vg) o (Do+1Iy) o (2.11)

where o is the average reflectance coefficient or albedo of the surroundings.
Dg and I are the diffuse and direct solar radiation calculated over an



horizontal plane. Diffuse radiation is anisotropic because it is not perfectly
diffused. The sky diffuse radiation is maximum around the sun and at the
horizon. Reflected diffuse radiation is anisotropic due to the variation of the
albedo values of the surrounding terrain and due to the variation of the ray's
incidence angle on that terrain. However, assumption of isotropy of  D; in most
of the models is often made as a result of the difficulties in the analytical
description of the process and lack of cloud distribution data. Models that
account for the anisotropy of the radiation were developed by Obled and
Harder (1979) and Dozier, et al.(1987).

Clouds affect direct and diffuse short-wave radiation. Although
scatter is the dominant process occurring with the presence of clouds, a
second important effect is the multiple reflections between the snow surface
and the clouds, increasing the radiation received at the snow surface. Type and
altitude of clouds and extent of cloud cover are important factors in the
estimation of radiation. Several models with different levels of complexity
have been proposed in order to evaluate the cloud effects on the incoming
short wave radiation. However, empirical models based only on hours of
sunshine, such as Angstrom (1924), or approaches including multiple levels of
cloud and transmisivity coefficients for each of them, such as Davies and Idso
(1979), have shown disparity with measured radiation. It appears that since
cloud fields change dramatically with time, surface-based cloud observations
are not adequate for radiation estimates on a time scale of hours (van der
Heydt, 1991).

In summary, short wave incoming radiation can be written by
combining (2.7), (2.8), (2.10) and (2.11), as:

S=I3+DpV4+D; (2.12)

Expression (2.12) can be used with (2.4) for the calculation of the total short-
wave radiation energy captured by the snowpack.

2.2.1.2. LONG WAVE or THERMAL RADIATION

The balance of long wave radiation of the snow's active surface is
given by the difference between the outgoing thermal radiation of the active
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surface and the incoming radiation from the atmosphere. This difference is

usually positive and some heat (effective radiation) is lost by the snow cover.
Downward radiation Il is originated under clear sky mainly in the

lower 100 m of atmosphere (Geiger, 1961). Ozone emits approximately 2% of the

total, carbon dioxide 17% and water vapor 81%. Variations in I are largely

due to variations in the amount and temperature of water vapor (Male and

Gray, 1981). The atmospheric downward long-wave radiation can be expressed

as: -

N=g0Ts (2.13)

where €, is atmospheric emissivity, © is the Stefan-Boltzmann constant and Ta
is the temperature of the air. Several approximations have been developed for
€, based on empirical correlation with air temperature and/or vapor pressure
as shown in Table 2.2.

Brunt (1952) suggested a correlation that is frequently used, as
function of air temperature and vapor pressure e, where a and b are empirical
coefficients. Kuz'min (1961) reported values of 0.62 and 0.005 for a and b,
respectively from measurements in the Russian plains, while Male and
Granger (1979) obtained values of 0.68 and 0.005 for prairie environments.

Investigator Date Equation

Brunt 1952 g,= a+byE

Brutsaert 1975 €. =(0.642/c) (-,1?; i
Satterlund 1979 €, = 1.08 ( 1- exp( .e'l‘./62.01 ))
Swinbank 1963 &=092 103 T2

Table 2.2 Air emissivity equations



Brutsaert's (1975) equation is physically based and was derived by
assuming a linear temperature decrease with height. Marks (1979) modified
this equation for alpine areas, assuming constant humidity variation with
height. Swinbank's (1963) formula has the advantage of depending only on air
temperature, but according to Paltridge and Platt (1976), it may over-estimate
radiation during the daytime. *

A comparative analysis of these equations was made by Aese and Idso
(1978). In general, the accuracy of these equations depends on the range of air
temperature prevailing during the application. Applying Swinbank (1963)
estimation for g, the incoming long wave radiation may be written as:

11 =092 1056 T,® (2.14)

Long-wave radiation from the snow surface is easier to estimate

because the snow acts practically as a perfect radiator or "blackbody" for
wavelengths above 2.5 um. whose reflectance is nearly zero. Using the Stefan-

Boltzmann Law, upward long-wave radiation IT can be written as:
IT=¢0 T (2.15)

where the emissivity of the snow &, takes values between 0.97-1.0
(Kondratyev, 1969; Anderson, 1976).

The net long wave radiation can be corrected for the effect of clouds.
By means of empirical regressions several formulas have been found. These
can be applied as a factor of the effective long-wave radiation. These
approaches also consider the clouds as a black body in the long-wave range. A
typical expression is presented by Unsworth and Moneith (1975) as:

Fe=1-amb (2.16)

where m, is the fractional snow cover and a,b are empirical constants.
2.2.2. TURBULENT TRANSFERS H AND LE
Heat and moisture transfers above snow occur as a consequence of

the turbulent mixing of air layers. Therefore, it can be considered that this
transfer process is governed by mechanical convection in the presence of
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wind, and thermal convection when dominated by buoyancy effects. In
comparison, molecular heat conduction and heat diffusion are of minor
importance. The exchange process mainly occurs in the lower 2 or 3 meters of
atmosphere and the fluxes, if air density is considered constant, can be
expressed as:

H=Cpp TW (2.17)
LE=L,p qw (2.18)

where q', T' and w' are the departures from the mean values of specific
humidity, air temperature and vertical wind component respectively. One way
of estimating these fluxes is to measure Tw and W , the covariances of the
respective variables. The eddy correlation method is essentially a direct
monitoring of the upward and downward fluxes of the quantities of interest
with a set of fixed instruments. The most stringent requirement is that sensors
respond to all scales of motion responsible for the fluxes, which involves
complex instrumentation. Furthermore, it is difficult to find flat places in the
snow area suitable for these types of measurements.

A second approach is to compute these fluxes from measurements of
the wind, temperature and humidity profiles in a layer above the snow
surface. Within this layer (~30m), vertical fluxes are considered as constant,
although the thickness changes with the strength of the wind, temperature
gradient and terrain type. Prandtl (1932) developed the equations for the
fluxes as:

_ U
Mv—-mea—z (2:19)
_ T,
H=-CppKn = (2.20)
LNE=-LVPKe3—czl (2.21)

where M, is shear stress or momentum transferred vertically, Kp , Ky and K.
are the eddy diffusivities for momentum, convective and latent energy
transfers, respectively, in [ m2/sec]. U is the mean horizontal wind speed in
the same units.
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If the temperature profile is equal to the adiabatic lapse rate
(0.01°C/m), Munn (1966) shows that:

au _y* -
= and Kn=U".kz (2.22)

12
where U*= (%) is the friction velocity, Mo is the value of My at the surface

and k is the von Karman constant's (0.4). Substituting equations (2.22) into o=
equations (2.20) and (2.21), then integrating between heights z1 and z2 and

considering the constant flux layer ~M,=Mo, the following expressions are

obtained:

He ok Kn U Up) (T Tu)
bldal = (In zy/z;)?

(2.23)

LE=L,p k2 kKi (Uz-Uyp) (g2-q) (2.24)
m (In zy/z;)?

Under neutral conditions of the atmosphere, that is, when mechanical
convention predominates, K./K;, and Ky/K;, can be considered as equal to
unity. Under unstable conditions these relationships are calculated using the
Monin-Obukhov (1954) similarity theory in which they are put as functions of
a dimensionless ratio z/L. The Monin Obukhov length L is an index of the
atmospheric stability (shear versus buoyant production of turbulence).

Km  onz1) Kn  ¢zL)

where ¢m,On and ¢. are unique functions of the stability parameter z/L.
Equation (2.25) has been found experimentally (Businger et al., 1971).

The most common application of equations (2.23) and (2.24), also
called aerodynamic technique, requires detailed measurements at a minimum
of two different heights. For measurements available at one height only, we
can apply these equations between the snow surface and the elevation of the
observation point. Considering that at the surface, z=zo, the roughness length



of snow (~0.001 m), U=0, T=Ts, and q=q(Ts), equations (2.23) and (2.24) can be
written as:

H=D, U, (T,-Ts) (2.26)
LVE = De Uz, ( €(Ta) - e('I's)) (227)

where:

_ Gpk Ky

_ o _0622L,pK* K,
(In 25/2;)? Km

P (nzyz))? Km —
In equation (2.28), ) the vapor pressure at temperature T, is related to q by
e =q P/0.622, where P is the atmospheric pressure. Dy and D, are bulk
transfer coefficients for convected heat and for latent heat transfer,
respectively. Values for Dy and D, have been reported by various
investigators. These values are obtained by measuring air temperature, wind
velocity and humidity at a unique height, assuming exponential variation with
elevation. A comparison of these values was presented by Male and Gray
(1981), showing significant differences between them. Instrumental errors
and differences in the height of observation, atmospheric stability conditions,
terrain cover and topography are considered to be the possible causes of the

gap among values.

2.2.3. GROUND HEAT FLUX and HEAT TRANSFER BY RAIN

The very low conductivity and diffusivity of snow, especially when fresh,
makes snow an effective insulating cover for the ground beneath. Even when
snow surface temperature drops by 10°C during the night, the soil surface
temperature may change by only about 19C for a 10 cm depth of snowpack
(Oke and Hannell, 1966). However, the snow not only protects the soil by
moving the "active" layer upwards, but it also conserves the latent heat
released. The soil surface is habitually near 0°C with an almost isothermal
profile in the upper layers. In this situation, the water in the pores is close to
freezing. However, when freezing occurs latent heat is released. This warms
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the surrounding area and slows down the freezing process. Therefore, until all
the water changes to ice there is a self equilibrating process which keeps
temperatures hovering near 0°C. A similar situation prevails during the
fusion process in which the latent heat is taken from the soil when the ice in -
the pore melts. Consequently, with a small temperature gradient the heat

exchanged with the soil Qg = -K, B_Zg is usually small for seasonal snow cover

and frequently neglected in snowmelt models.

Heat convected by rainfall can be expressed by the difference of heat
content in the rain before reaching the surface and the heat content in
equilibrium with the pack temperature. It is usually calculated as:. ‘

szpwcp(Tr’Ts)Pr

where P, is the rainfall. The magnitude of this flux is relatively low. In fact,

for operational purposes, it is usually assumed that T is 0°C and T; is equal to
the air temperature (Male and Gray, 1981). When the snow temperature is
below 0°C the situation is more complicated because part of the rain freezes,
releasing latent heat. The distribution of this heat is controlled by the way the
water moves within the pack. The transmission properties are in turn

governed by the internal structure of the pack, which changes by the
percolating water. However, under freezing conditions snowfall is expected. In
this case the heat is not convected across the boundary since the new snow
rests on top of the pack.

2.3. SIMPLIFIED EXPRESSION OF THE ENERGY BALANCE -

From equations (2.14) and (2.15) the net long wave radiation can be

written as:
,=092 10°c T,%- &0 T&
Applying the Taylor series, we can expand I, around T,:

,=092 1056 T,b- &0 T*- 4 &0 T3 (Ts-To) (2.29)
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The latent heat transfer to the atmosphere (2.27) can be expressed as

a function of temperature and relative humidity. The saturated vapor pressure
eav) can be calculated as a function of temperature using the Clausius-

Clapeyron equation:

ey = 6984.5+T(-188.9+T(2.133+T(-1.289.10-2+T(4.39 10+
T(-8.024 108+6.137 102 T ))))) T (2.30)

On the snow surface, the vapor pressure is considered the pressure of
saturation and calculated using (2.30) for the temperature of snow at the
surface. The air vapor pressure can also be written as a function of the air

saturated vapor pressure if h, the relative humidity, and Ta are known:

€(Ta) = €(Ta) N (2.31)

Applying (2.30) to the snow surface and expanding around Ta we obtain:

. . dem
€(Ts) = €(Ta) + WTa(Ts-Ta) (2.32)

and substituting (2.31) and (2.32) in (2.27) yields:

LE=D. U [e*‘ (1-h)+(a°z"))T (Ts-Ta)] (2.33)
M oT ra :

Equations (2.26), (2.29) and (2.33) are linear expressions of the snow
temperature Ts, therefore the long wave radiation and turbulent transfer
terms, labeled G1, can be simplified to the expression:

ILL+H+ LLE=Gl =A+BT; (2.34)

where:
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A= 3.80859 10° ¢ + 8.37052 107 Ta ¢ + 766531. Ta2 6 +
3743.74 Ta3 ¢ + 10.285 Ta* ¢ + 0.0150696 Ta’ ¢ +
92106 Tab 6 - 5554571841.0e, 6 + 447174 Ta2e, 6 +

2184.0 Ta3e, 6 +3 Ta*e;, 0+ 83.3938 Deu+Dh Tau +
0.0122117 De Ta? u + 0.000527205 De Ta3u +

0.00000906021 De Ta% u + 8.11362 108 De Ta’ u +

3.0685 104-10 De Ta® u -83.3938 De h u - 0.362288 De Ta*h*u +
0.0122117 De Ta% h u + 0.000263603 De Ta> hu +

3.02007 106 De Ta*h u +2.02841 108 De T’ hu +

6.137 101" De Tabhu

and

B= -162771336 &, G - 1788696 Ta g, G - 6552 TaZ g, © -
8 Tale, o+ 0.724575Deu-2Dhu-0.0488467 De Ta u -

0.00158162 De Ta2 u - 0.0000241606 De Ta3 u -
2.02841 107 De Ta? u - 7.3644 10A-10 De Ta’ u

If Qpand Qg are neglected, equation (2.2) for the energy balance of the
snowpack can now be written as:

dU/dt = G1+ sw +M

2.4. PROCESSES WITHIN THE SNOWPACK

The snow pack is made of non-homogeneous material whose
constitutive characteristics depend at any time on the thermal history of the
snow cover from the time of its deposition. This makes snow a difficult study
material. As Mellor (1975) states, "...there is no material of broad engineering

(2.35)

28



significance that under normal conditions display the bewildering
complexities found in snow".

The melting of snow depends strongly on the transfer of heat and
mass (water and vapor phase) within the pack. In turn, the redistribution of
mass and heat creates the conditions for a rapid metamorphism in the crystal
structure, i.e. size, shape and bonds between ice grains. Finally, the changes in
the crystalline structure that take place in the ice matrix control the transport
process. Integration of these processes is at present an unsolved problem.
Moreover, there are limitations in describing each individual process in terms
of bulk properties of the snow pack.

Research on dry snow has shown different metamorphic
characteristics under conditions of uniform temperature and those occurring
under a constant temperature gradient. Different physical processes take
place under these two idealized conditions.

The metamorphism in snow is governed by the movement of vapor
within the snowpack. The shape of ice particles and bonds result from the
sublimation of water vapor on the grain surface and/or the condensation of
vapor coming through the void spaces between particles. The vapor pressure
gradient required for transportation of heat through pores may be driven
either by the temperature gradient (temperature gradient metamorphism) or
by the curvature of grain surfaces, and surface stress when temperature
remains constant (equitemperature metamorphism).

Vapor diffusion seems to be the key to the understanding of snow
metamorphism. Several basic structural models of snow have been adopted in
an Vattempt to explain the vapor transport and the change in snow density.
However, a comprehensive theory of the processes has yet to be achieved.
Fortunately, the thermal effects due to vapor movement in the snowpack is
accounted for in practice through the use of the "effective" thermal
conductivity, as will be explained latter. Nevertheless, an overview of
metamorphism is presented herein in order to clarify the equations used.

The changes experienced by crystals in a uniform temperature field
have been carefully documented by Bader et al. (1939) and Yosida et al. (1955).
A sign of equitemperature metamorphism is the rounding of sharp corners in
the snow grains and the decreases in thickness at the bases of individual
branches (Male,1980). When grains are close to each other formation of bonds
at the points of contact takes place. Grains then become larger and more
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nearly spherical. This metamorphic process can be viewed as the movement of
snow grains toward a state of equilibrium in which the free energy tends to be
minimal. Since the surface is important on the scale of individual crystals,
they move in the direction which decreases both the surface energy per unit
area and the surface area per unit volume (Male, 1980). Experimental evidence
reported by Yosida(1955), Hobbs and Masson (1964), Hobbs and Radke(1967)
suggests that the movement of water vapor is responsible for these changes in
the crystal structure. The vapor transport is caused by differences in vapor
pressure in the vicinity of the grains given by the curvature of grain surface,
local surface stress and crystal structure. Based on Fick's law, Yosida (1955)
developed an equation for the vapor flux as a function of the grain surface
curvature and the vapor diffusion coefficient. Later de Quervain (1973)
presented an expression for the saturated vapor pressure as a function of
temperature. This expression applies to the range of temperatures
encountered in the seasonal snow cover. Perla(1978) derived the equation for
the diffusion coefficient based on a normalized diffusion value measured at
specified conditions of pressure and temperature.

Dozier(1987) pointed out that the rounded forms associated with the
so-called equi-temperature metamorphism apparently required a small
temperature gradient to occur. He said that under true equi-temperature
conditions, metamorphism is very slow. Consequently, temperature gradient
metamorphism and equi-temperature metamorphism are terms that poorly
describe the process (Colbeck, 1986).

Under a temperature gradient maintained at a constant value for a
sufficiently long period, distinctive crystal shapes will grow on the snow
cover depending on the magnitude of the gradient, the grain size, and density
of the original snow. Typically "deep hoar" and "skeleton" type crystal as
classified by Akitaya(1975) are found under the above conditions. The primary
mechanism responsible for the formation of these types of crystal is the vapor
transport due to the temperature gradient. Since vapor pressure is ‘
temperature dependent, temperature gradients produce associated vapor
pressure gradients, which cause water vapor to diffuse from warmer to colder
parts of the snowpack. The understanding of temperature gradient
mechanisms is due primarily to the works of Yosida et al. (1955), Giddings and
La Chapelle (1962) and de Quervain (1973).
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Yosida assumed that if the grains at a deeper layer have a higher
temperature, water will sublimate from the top of these grains, move across
the voids and condense on the grain immediately above. The heat of
condensation gained by the upper grains will cause the repetition of the
process. This "hand to hand" process will last as long as the temperature
gradient exists. In this way, mass and heat are transported by temperature
gradients in the pores and sublimation-condensation processes in the grains.
Therefore, the engine that runs this mechanism is the temperature gradient
in the pores which is larger than the average temperature gradient of the
snow pack. Temperature gradient in the pores is larger because the thermal
conductivity in the ice is one hundred times that of the air and convection
currents in the air spaces are improbable (Akitaya 1975).

The vapor diffusion coefficient is the proportionality constant of
Fick's law applied to vapor diffusion. This is a fundamental parameter in many
problems of heat and mass flow. However it is very difficult to quantify the
vapor diffusion coefficient in porous media containing water or ice because of
two effects which counteract each other (Colbeck 1993). First, the blocking
effect of the solid particles reduce the area available for flow, and so increase
the flow path length. Second, the ice-water phases system acts as a source
and/or sink of water vapor, increasing the flow. The flow path is shortened
when a coupled source-sink drives the flow directly across the pore.
Consequently, attempts to determine the diffusion coefficient in snow have led
to cbntradictory results depending on the approach taken.

The vapor diffusion coefficient must be determined under large
temperature gradients over a large period of time because the equations apply
to a steady state regime. These conditions can only be maintained in laboratory
experiments. However, steady state regime is difficult to reach without
significant changes in crystal structure. It is important to note that enough
time has to be allowed in order to reach equilibrium, not only in the
temperature profile, but also in the snow mass redistribution.

2.4.1. PROPERTIES OF THE SNOWPACK
The discussion in the preceding sections has emphasized the various

processes of metamorphism. These processes control the bulk properties of
snow. Thermal properties that depend only on density such as specific heat



and latent heat, are well defined. However, those that depend on thermal

conductivity or intrinsic permeability of the snowpack are affected by size,

shape and structure of crystals. The accuracy with which the various

properties can be determined is directly related to their dependence on the

metamorphic processes and our understanding of these processes. A
The latent heat of fusion of snow per unit mass is equivalent to that of

ice. The latent heat of fusion for ice at 0°C and atmospheric pressure is 79.8

cal/gr (Dorsey, 1940). This value decreases approximately 0.6% per degree drop

in temperature. The latent heat of sublimation is also temperature dependent

as shown in table 2.3

T Lat. Heat
oC cal/gr
0 677.20
-10 677.80
-20 678.09
-30 678.20
-40 678.21

Table 2.3 Latent heat of sublimation

The thermal conductivity of snow, defined as the proportionality
constant in the Furrier equation, depends on factors such as density,
temperature and micro-structure of snow. As it was explained above,
temperature gradient could induce a transfer of vapor and subsequent release
of latent heat of vaporization. Mellor (1977) pointed out that in dry snow the
heat transfer process involves conduction of heat in the network of ice grains
and bonds, conduction across the air spaces, convection and radiation across
pores (probably negligible), and vapor diffusion through pores. Yosida (1955)
suggested that the movement of water vapor contributes 37 percent to the
"apparent” thermal conductivity of snow density of 100 Kg/m3, but only 8
percent at a density of 500 Kg/m3. Because of the complexities of the heat
transfer process the thermal conductivity is taken as "apparent" or "effective"
conductivity A. in order to embrace all the heat transferred. Measured values

! S|
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of A, as reported in the literature are dependent on the method of
measurement (transient, steady) and on the morphic state of the snow. Mellor
(1977) shows the variability in the relationship between A, and density p as
reported by different scientists (Table 2.3 ). As Langham(1981) pointed out,
considerable care should be exercised in applying these relationships, since it
is difficult to determine whether the thermal regime encountered in the field
problem will correspond to the regime under which the curve is developed.

Snow density ps, is defined as the density of the solid (ice) portion of the snow

cover, and is expressed in gr/cm3 in Table 2.3.

........................................................................................................................................

Investigator Expression Density range
Abels (1984) Ae=0.0068 ps? 0.14< ps <0.34
Janson (1901 Ae=0.00005+0.00192+0.006 ps* 0.08< ps <0.5
Van Dusen (1929) A.=0.00005+ 0.00%p:?+0.0052 ps*

DeVaux (1933) Ae=0.00007+0.007;2 0.10< ps <0.6
Kondra'eva (1945) Ae= 0.0085p;2 0.35< ps <0.5
Bracht (1949) Ae= 0.0049p,? 0.19< ps <0.35
Sulakvelidze (1958) Ae= 0.00122p;? ps < 0.35
Yen (1965) Ae= 0.0077 ps? 0.52< ps <0.59

.........................................................................................................................................

Table 2.3. Effective thermal conductivity of snow - cal/(cm sec K).

2.4.1.1. SNOW DENSITY

The laws that describe transfer processes within the pack are related
to the physical characteristics of the snow that is dictated by the density and
metamorphic state. The relationships with the metamorphic state of the snow
are not precisely defined, and grain size, shape and crystal structure are not
commonly measured for hydrologic purposes. Thus, density is used as the
major indicator of the physical structure of the snow cover (Anderson, 1976).

Snow deforms elastically when subject to small loads for short periods
of time, but it also deforms continuously and permanently if loads are applied
for longer periods. One of the most commonly observed characteristics of
snow, and the principal mechanical process occurring in snow deposited on
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relatively flat terrain is the settlement or densification of a given layer under
the action of the overburden pressure (Male, 1980).
The seasonal compacting of snow has been studied by several

investigators such as Yosida (1955), but Bader (1953) was the first to suggest
that this process could be characterized by the compacting viscosity 1 to be

determined from field observations:

190 _ws
pe dt M

where: .
ws: weight of snow above the layer for which the density

change is being computed in water equivalent [cm].
m; viscosity coefficient, a constant for a given density,

temperature and snow density [cm. hr].

The viscosity coefficient T can be calculated as the result of two

different multiplicative effects, compacting and temperature changes:

19w
ps dt MM 50

Kojima (1967) obtained from experimental measurements an

expression for M:

Ne=Nco- €XpKo.Ps) (2.37)

where Mo is the viscosity when Qs is reduced to zero [cm.hr] and kg is

a constant value from 15-38 [cm3/gr].
Mellor(1975), based on observations of natural snow in polar regions,
developed an equation for the viscosity coefficient  T);. This expression included

the temperature gradient effect:

Me A LT
L= exp [R(T.Tc )} (2.38)

where: A is the activation energy of snow 10* [cal/mol]
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R is the gas constant, 2[cal/mol K]
T, is critical temperature, 0°C
MNio is Ne at 0°C

For the temperature normally experienced in areas with seasonal

ow cover (R ’II}T ) could be about 0.08K"! , according to Anderson (1976).

bstituting (2.37) and (3.38) in equation (2.36) we obtain:

d W,
L _£ =35 - - -
o dr . XPL-0.08 (TeT)] expl-kops] (2.39)

ere T, is the viscosity coefficient at  0°C and zero density. This expression

has been also presented by Kutchment et al. (1983) and Motovilov (1986).




CHAPTER III

3. DEPTH AVERAGING OF GOVERNING EQUATIONS
3.1. POINT EQUATIONS

Snow is a three phase system composed of a mixture of water (gas,
liquid and ice) and air in proportions that depend on the energy balance.
Source energy is provided internally by latent heat due to phase change and
externally by heat exchange with the atmosphere and by solar radiation.
Energy is stored as heat in each phase and is subject to advection within the
snowpack.

Equations for the conservation of mass and energy were formulated
by Morris(1982,1983). Subscripts i,w and v are used to denote ice, water and
vapor. The mass continuity equation for the component k is:

d d
E(Pkek)+$(Pk9ka)=Jszj

The equation for the conservation of energy is:

g [Pkek(Cp)k %t—r + PBvi(Cp)x %rz. =

2
oz oz

—(x%)+MwLw+MiwLiw+Mivuv+ﬂ

| where:

px = density of component k [gr/cm3];

Ok = volume per unit volume of snow;

vk = velocity in the vertical direction [cm/hr];

t = time [hr];

My; = mass of component k produced per unit volume per unit
time by a phase change from component j [gr/(cm3 hr)];

(Cp)x = specific heat at constant pressure [cal/(gr 0C)];

T = temperature of the mixture [0C];

(3.1)

(3.2)
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K = thermal conductivity [cal/(hr cm 0C)];
Qn = net radiation energy [cal/cm2);
Ly; = latent heat released by transformation My;, in [cal/gr]

Every term in the mass equation is given in gr/(cm3 hr). In the
energy equation (3.2) terms are in cal/cm3 hr.
Several assumptions are often made in order to simplify these
equations. It is usually assumed that the ice matrix is at rest i.e. v =0. o=
Therefore, melting or snowfall do not involve a movement of the ice grains in
the snowpack. Additionally, the heat capacity of the gaseous phase is very
small compared to those of ice and water and may be ignored. Also, the
pressure of the moist air can be considered constant . With these assumptions,
the equation for energy (3.2) now becomes:

(POCPY + PuBu(CPIW ) 2 + PuBuva(Colw Ir-=

9 2Ty + Myw Lo+ Miy Liw + My, Ly + 220 (3.3)
dz = 0z 0z

Distributed models consider the details of the process occurring
within the pack and are based on the conservation equations which relate
density, specific volumes, velocities and temperatures. However, to solve the
system, an equation of state is needed which expresses the constitutive
properties of the material. Morris and Godfrey (1975) and Morris (1983) have
used Colbeck's (1975) analysis of thermodynamics of wet snow to develop a
single phase approximation model, approaching the problem as in soil
physics. This formulation is based on several assumptions (mentioned in
section 1. ), resulting in a complex system.

In this study, the problem is approached by integrating the energy
equation over the snow depth in which two distinct layers of dry and wet snow

are considered.
3.2. SNOWPACK MODEL

In order to average the energy equation over the snow depth, an
active layer model is adopted. It is assumed that the vertical temperature of the



snow varies linearly with the depth until the freezing level Z is reached

(Kondo and Yamazaki, 1990). Below that, the temperature remains constant at
0°C. The freezing depth layer will move vertically responding to the energy
balance. It is assumed that the water content W of the snowpack is null above Z
and that it takes a constant value Wo below Z as shown in figure (3.1). The

linear relation between T and Z allow us to to write the average snow depth
temperature of the snowpack T,asT= %—Ts.

. Ts 0.C
air

Figure 3.1. Snowpack Model

The constitutive relation can be expressed by the following equation

of state of the snowpack:

W=0 for T <0°C (3.4)
W= Wo for T=00C

Wo is the gravitational water content of the snow defined as the ratio of mass

of liquid water to the mass of wet snow. Since 0,, is a volume relation, it can be

said that:

Bw Pw = Wops (3.5)
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- If the air mass in the snow is ignored, it can be assumed for dry snow
that the mass of ice is equal to the mass of snow.
6; pi=ps (3.6)

A positive energy balance will result in a shallower freezing depth Z by

which fusion heat will be used to produce water from a dry snow. When the

whole snow profile D reaches a saturation state ( Z=0 and T= 0°C.) any additional

heat surplus M will yield snowmelt contributing to the runoff. Kuz'min (1961) -
called M the snowmelt energy. The relationship between the snowmelt energy

M and the water production by the snowpack M, can by written:

[Lm%_] (3.7)

_ M
M = 5w (1W0)) om? hr

~ where (1-Wy) is defined by DeVries and Franke (1988) as the thermal quality
of the snow. It represents the heat necessary to produce a given amount of
melt water from the existing snow, to the same quantity of melt from pure ice.

3.3. SNOWPACK DEPTH AVERAGING

Usually averaged equations over the snow depth deal only with the
mean properties of the snowpack and do not consider spatial variability
occurring within the pack. However, by considering two layers, the main
properties of the snow are captured.

Integration of the energy equation (3.3) is performed in two steps:

(1) from z=0 (surface) to z=Z(t), and (2) from z=Z(t) to z=D, the snowpack depth.
Given that one of the integration limits is changing with time, the Liebnitz

rule was used. In the first term of (3.3) (Cp); is a constant. Considering (3.6)
and assuming a mean vertical density Es for the snow cover profile, we obtain:

Zit) D

] PiB:(Cp); %% dz = p; _(Cp)i_f %IT_ dz +ps (Cpk f

0 y

aT
Ty dz (3.8)
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Since there is no temperature change in the lower layer ( 09C), the second
integral on the RHS of (3.8) is zero. The first term of (3.8) leads to:

0] po. zw ‘
9V 4z =4 T T, di
I 3 dz dt [ dz - T,L at + (3.9)
0 [} .
where T,=0°C and L 0. Based on the relation Ty =2 T, the integral term of -

the RIS of (3.9) can be expressed in terms of Tas -d- [ Z T ]. Substituting back

(3.9) in (3.8) result in:

&f

] pOiCoR O dz = puCp [T4Z +Z4T | (3.10)

The second term of equation (3.3) is written as:
D oT o - D oT
J; Pw ew (Cp)w '"aszz L Pw ew {Cp)w ﬁdz"' Lu Pw ew (Cp)w Edz (3-11)

From the model adopted it can be seen that 8y = 0 in the upper layer nullifies
the first integral of the RHS of (3.11). The second integral is also nullified
because the lower layer is assumed under isothermal 0°C conditions. Therefore
there it is not necessary to apply Leibnitz rule to (3.11) and one can simply
state it as: ’

J Pw Ow (Cp)w %t!dz: 0 (3.12)

The integral of the third term of equation (3.3) is expressing the flow of heat
contained in the water carried across the upper and lower boundaries of the
snowpack with a velocity vyw. These flows are the result of the incoming

precipitation and the melt water leaving the pack:



f puBwva(Clw 2dz = M- Qp (3.13)

where M was already defined as the energy required to produce snowmelt and
Qp is the heat convected to the pack by precipitation. The heat content of

snowfall is not carried across the boundaries since the new snow rests on the
old surface of the pack.

Integration of the first term on the right hand side of equation (3.3)
gives the heat flows across the boundaries controlled by a temperature
gradient at the interface:

D

0, dT

—(k=)dz= -Q+ H 3.14

f aZ (K az ) z Qg ( )
0

Qg is the heat exchange with the soil (negative downward) and H is the

sensible heat exchange with the atmosphere by turbulent transfer.

The term M;y, Liw of (3.3) is related to the fusion heat of the snowpack.
Considering that My is the mass of water per unit time produced by a unit
volume of snow when a phase change takes place, then it can be assumed that

Miw =ps %v . In this case:

D /43 D
f Mjw Liwdz = Lfb_sf %dz + Lf Esf %tvy-dz (3.15)

)

By using the Leibnitz rule of differentiation on the first integral of the RHS of
(3.15) we can write:

Z() V/0)
ow. _d _w.dZ as
fo o dz = dtjo Wdz - W, dt + Wsdt (3.16)

Since in the upper "dry" layer W = 0 (and obviously W =0), (3.16) becomes:
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zy
f a—w—dz = 0 (3.17)

D D
ow . _ d dD iz
f dz = tL»Wdz Wb a0 + det (3.18)

where it is assumed % = ( in a small computational time increment. In fact,

the relative velocity of Z(t), [~1 m/hr] , compared to the velocity of D(t),
[~1mm/hr], allow us to neglect d(% for the integration of the energy

conservation equation. Since water content W takes only two values O or W
which are constant for the upper and lower layer respectively, equation (3.18)
leads to:

D
ow . _d 1 = - wadZ
L» at dz = dt[WO(D )] = Wo dt (3.19)

Considering that L;y by definition of (3.2) is equal to -Ly, the latent heat of
fusion, expressions (3.17) and (3.19) can be substitute in (3.15) to obtain:

D
f Miy Liw dz = L¢ ps WO%Z—{ (3.20)

Note that the change in the amount of liquid water content is a source of heat
when the freezing layer moves downward, increasing z.

If the latent heat of sublimation/solidification is neglected by
assuming M;, Liy = O, then the latent heat of vaporization/sublimation can be

expressed in terms of the evaporation transferred to the atmosphere as fallow:
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f Myy Lyy dz =My Lyy D = -Ly E, ; (3.21)

Finally, the solar radiation, which is positive downward by micro

meteorological convention, becomes:

I %dz=%0'%=% (3.22) -

Q, includes the short-wave incoming radiation sw, and the net long wave

radiation:

Qn =swp - swp + Iin + Iou (3.23)

Expressions (3.10), (3.12-14) and (3.20-21) can be substituted in (3.3) in order to

obtain a depth averaged energy equation for the snowpack.

5. ©p; z9L + 5 F - 4z _
ps o) 9L + b, [ (CpxT -Lr Wol &

swo-swp+Lin+ Lw+H -LyEy -M+QP-Qg (3.24)

It is difficult to estimate the heat Q, convected by the rain. Kondo and
Yamazaki (1989) consider that it is small enough to be ignored, i.e. 10 mm of
rain at 10°C can melt only 1 mm/d in water equivalent. The heat exchanged
with the ground is even less except in early winter (Kojima and Motoyama,
1985). Their values agreed with experimental results presented by Kuz'min
(1961) in which the calculated heat exchange never exceeds 10 cal/cm2 d.
Morris (1985) also indicates that the heat exchange with the ground by solid
conduction is very small compared to the energy fluxes at the upper boundary.
He suggest the use of a constant value of 0 -10 cal/cm2 d. Similar conclusions
were found by Smith (1974). Neglecting the rain and ground heat exchanges
equation (3.24) becomes:



ps (Cp)i de% +ps | (Cp:T -L¢ Wol %ZT = sw+Gy-M (3.25)

where:

sw = the net short wave radiation component absorbed by the pack.
Gi= i+ Iow+H -LyEy

G; is the incoming energy across the upper boundary excluding the net
incoming short-wave radiation. As described in Chapter I, = Gj can be
approximated by a linear function of the surface snow temperature:

G =A+BT, . '

The right hand side of (3.25) includes the driving force terms that
represent the energy exchanged by the snowpack. This energy may increase
the temperature of the upper layer of the pack (first LHS term) and/or raise
the freezing depth layer (second LHS term) by melting dry snow. The
snowmelt energy M is zero except when  T=0°C and Z=0 according to the
equation of state:

W=0 and M=0 for T<=00C
W=Wo and M=-(sw+Gl) for T=0°C (3.26)

A relationship between T and Z can be obtained from the heat flow balance in
the surface layer as shown in Figure 3.2

gt |t

Figure 3.2 Flows exchanged at the snow surface
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If a heat balance is performed on an infinitesimally thin snow layer
according to Figure 3.2 we can state that (Kondo and Yamazaki 1990):

Xeg=G1 o (3.27)

It should be noted that the short-wave radiation is not included. In fact, sw
radiation is either transmitted or reflected in this "thickless" layer. 4

The effective thermal conductivity is used in place of the thermal
conductivity to allow the thermal effect of the transport of water to be taken
into account indirectly. This term captures most of the heat transferred due to
the vapor carried by a temperature gradient. On the other hand, since it is
virtually impossible to separate the effects of the conduction and diffusion
processes, it is customary to express the measured value as an effective
conductivity of the snowpack.

Since the temperature gradient is assumed to be linear in the adopted
snowpack model, the snow surface temperature T; is expressed as T = 2T

(Figure 3.1). Therefore, equation (3.27) can be written in term of T as:

'2)\'3(;c'T) =iy (3.28)

Although A. depends on the state of the crystalline structure of the snow, most

of the experimental determination of A, has been correlated solely with snow
density ps. A quadratic relation of the form:

Ae= ki + ko ps? (3.29)
can be adopted based on the experimental results obtained by several
investigators and presented in Table 2.3.
3.4. DENSITY CHANGES IN THE SNOWPACK

Since the changes in the density that are controlled by metamorphic processes

are not fully understood, only changes due to compacting and temperature



gradient processes are considered. These two processes have been precisely
quantified and validated in the last 40 years by Bader et al. (1939), Kojima
(1967), Mellor (1964), Anderson (1976) and others.

As mentioned in Chapter 2, variations of the snow cover density with
time is expressed in equation (2.37). Integration of equation (2.37) over the
snow depth can be approximated by considering ps as the density
corresponding to the point located at 2 D/3, D being the snowpack depth (van
der Heydt, 1991). Equation (2.37) becomes:

.

ar (%D)‘_’SZ Mo exp[-0.08 (T, - T)] expl-kops] (3.30)

3.5. DEPTH AVERAGE OF THE MASS BALANCE EQUATION

The conservation of mass equation (3.1) is simplified assuming that
the snow composition remains constant. This assumption is commonly made in
lumped (in depth) models. Neglecting the mass exchanged between ice and
vapor phases ( M;,= 0), equation (3.1) can be written:

J — J —
g(piei)'*'a-z'(pieivi)—Miw
%(awewvw)=Mwi+va

9
0z

(3.31)
(Bv ev Vy ) = Mvw

These equations are integrated over the snowpack depth D assuming that the
ice matrix is at rest ( v;=0). Substituting water velocities across the boundaries
by M and P, vapor fluxes by E, and considering (3.6), the system can be
written as:

D
f %ps dz =D M (3.32a)

pw M - P) =D M,y - D My (3.32b)

pw Ey =-D My, (3.32¢)
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Introducing (3.32a) and (3.32c) into equation (3.32b), and rearranging:
D
d
f gpsdz = pw (Pi-E-Mp (3.33)
0

Considering that D may vary with time, the integration has to be performed by

using the Liebnitz rule: -

: 0 ° D

j <psdz =dd_J psdz-{ps %f—]o (3.34)
9 dps = ap
Spsdz =D -p LD (3.35)

Introducing (3.35) in (3.33) the mass balance equation becomes:

Dadgas‘as%‘ = Pw (PI‘E'Mr) (3.30)

In summary, a point location on the snow cover area may be represented by
the developed equation system. This system describes the averaged physical
processes at this point location occurring in a vertical axis through the
snowpack. The laws that govern the energy and mass continuity in the
snowpack can be characterized by the system of equations (3.25-26), (3.28-30)
and (3.36):

Energy Equations:

ps (Cp) Z% +ps [ (CoiT -Lg Wol %% = sw+G;-M (3.37.a)




3T _
g

le = kl + k2 652

&5 - =3
% =ps’ Do exp[ 0.08 T expl-kops]

Mass equation:

_d_—_—@ = = =
Ddt Ds - Ps i Pw P,-E-M,))

Equation of state:
M=0 for
M=-(sw+G1) for
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(3.37.d)

(3.37.¢) ~

(3.37.1)



CHAPTER IV.
4, SPATIAL AVERAGING

The equation system (3.37) describes the energy and mass continuity of
the snowpack. These equations represent the snowmelt dynamics at a point
location in the snow cover area and characterize the depth averaged properties
and processes within the pack at that point. Although they are actually depth
averaged equations, we can consider them as point location equations in relation
to the snow cover area.

The averaging of differential equations over time or space has been
traditionally performed by using the Leibnitz rule of differentiation. The Leibnitz
rule was applied in Chapter II in order to obtain depth averaged equations from
the equations that describe the snowmelt physics at a point location. Similarly,
the Leibnitz rule can be applied in order to develop a spatial average system.
However, when the point location differential equation is non-linear as in (3.37.a)
the averaging process introduces covariance terms that result in a non-closed
system which eliminates the possibility of finding a solution to the conservation
equations. Additionally, a drawback of the Leibnitz rule of differentiation is that it
requires the specifications of the boundary conditions at the integration limits
which are very difficult to specify in certain physical cases (Chen and Chow,
1971).

A second frequent approach is to write the point location equations in a
way that state variables are expressed as departures from the spatial means. In a
problem arising from the physics there are often good reasons to choose a certain
variable as the perturbation parameter, although there are usually other possible
choices. According to Murdock (1991) "the creation of good perturbation
problems is an art rather than a science, requiring the understanding both of the
subject area from which the problem arises, and the mathematical theory behind
the solution". A classical application of this techniques is the well known
averaging of Navier-Stokes equation that govern turbulence. An expression for the
momentum of the mean flow is achieved by perturbing point velocities around
the mean. However, the non-linear nature of the point equations results in a non-
closed problem, yet it depends on the covariance of the velocities.

The approach that is applied here is based on the perturbation of the
"snowmelt physics" rather than single variable perturbations. We can consider the
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point location equation as a perturbed mean equation. This perturbation is due to
the separation from the areal mean of some of the variables that describe the
snowmelt physics. With the use of the expansion theory and some mathematical
manipulations we can obtain an approximate closed system depending on spatial
statistical parameters of the snowmelt process. However, in order to apply the '
ensemble averaging methodology to develop the areally-averaged equations of the
snowmelt physics, we make the fundamental assumption that snowmelt proéess is
spatially ergodic. ‘

4.1 SPATIAL AVERAGING OF THE DEPTH AVERAGED EQUATIONS (DAE)

It is convenient as a first step to reduce the equation system (3.37).
Solving (3.37.b) for Z and substituting in (3.37.a) one obtains,

5
= M)@ - e G ) _ ]
Ps (Cp)l( Gy | dt +ps [ CoNT -Lg Wol - 1 =sw+G -M  (4.0)

Replacing A. by the RHS of (3.37.c) and rearranging, we can condense equations
(3.37.a-c) into a single equation:

dF -1 -
o=t (sw+G1-M) (4.1)

where:

= 2k ps +2ka ps°

b=[2 AN T - LiWoA + B(Cp) T { ‘psG e }
1
The energy conservation equation can now be described by (4.1) and (3.37.d). In
these equations, sw is given, G1= A+B T, where A and B are calculated from the
meteorological data (equation 2.34), M is unknown and T and b_s are independent
variables.
In an extended area, we can consider that T(t, %) and E(L X) are also

functions of the point location X in the snow cover. In the spatial averaging
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procedure, the equations will be expanded around the ensemble mean of these
two variables, hypothesizing that the spatial variability of the snowmelt process is
mainly given by the spatial variability of T(t, x) and p(t, X). We have discussed
already in Chapter II the importance of these two variables in the melting
processes. In a broad sense, it can be said that snow temperature dictates the
direction and magnitude of most energy fluxes across the boundaries, and snow
density is the bulk parameter that best describes the internal properties and

physical state of the snowpack.
4.1.1. EQUATION FOR THE SPATIAL MEAN

In order to simplify the procedure we can denote equation (4.1) and (3.37.d) in

the forms:

dT - a 2.

The depth averaged rate of the snow temperature T can be written in terms of
Taylor expansion series around the spatial average (under the ergodic
assumption) <T> and <ps> as:

- damp)] = = damp)| (5.5
T - fao] o + [0l 7y o L 5o

3 ' 2
.LI:M] (T_<T‘>)2 + %{a___(a(r;p))} (E-<a>)2 +
(0) (0)

2 oT2 ap?
2
P-aéag—")")ﬂ (o)(T-<T>) (p-<p>)+0 [ [T aLT5)P, (5-<';5>)3]

(4.4)
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where the sub index (o) refers to the function within the brackets evaluated at the
mean values (T= <T>, ps= <ps>), and O[] indicates the truncation error which
is of the order of the first omitted term.

Taking the expectations on both sides of (4.4) we obtain the expected
rate of temperature that a point location in the snow cover will experience, i.e. the
spatially averaged snow temperature rate. First, analyzing the left hand side of
(4.4):

@4 [ 5o

Applying the Leibnitz rule to the integral, (4.5) becomes:

(@4 4] 7o

If the averaging is performed over a region within the snow cover area we can
state that:

@i

The expectation on the right hand side of (4.4) can be analyzed as follows:
In the second term the function within the brackets takes a deterministic value

when evaluated at (o). Hence:

But, <( T-<T>)> =0 and <( p - <p>)> = 0 under ergodicity. Using the same
reasoning in the fourth and fifth terms of (4.4), it can be seen that the expected
values of the square of the deviations are the corresponding spatial variances, and

the product of deviations in the sixth term becomes the spatial covariance
between T and Es . According to (4.6) and with the above considerations, equation

(4.4) can be written as:
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T 9 ( )} = % (ar.p)) -
d<T> _ s L|20m) | Ty 4 LBy 5
5= = [ame] @ 2{ — e ML U AR i = I
3 o
[ (a.p) } cov (T, p) (4.7)

dTdp | (o)

The error involved in the approximation is of the order of the third moment of T
and Es. Following the same procedure for the equation (depth averaged)

describing the rate of change in snow density, a second spatially averaged

equation can be obtained:

d<ps> 1 az(bcr.m)} — . 1|8 (bap) =
= [t o + =|——————| Var(T) + 5 |———| Var(ps) +
dt [M-P)] (0) 2{ T2 ©) (T) 2 8p2 ©) (ps)
9% (ber,p)) = =
l:m‘p—" o Cov ( T ¥ p) (4.8)

It may be noticed that equations (4.7) and (4.8) depend on the spatial parameters
<T>, <ps>, Var(T), Var(p,) and Cov(T,ps). Therefore, in order to close the

system we need to develop equations for the variance and covariance terms.
4.1.2. EQUATION FOR THE SPATIAL VARIANCES

Applying the definition of the variance,

dVar (T)

—d (25 . <TS2
i dt(<T> < L&) (4.9)

and operating on the RHS of (4.9) and considering (4.6) one obtains:
s 2 <T> <d> = 2( (T-<T>)(dD))
<2Tdt> 2<T><dt> 2 (T <T>)(dt)

Denoting by f=(T -<T>) and by ar,p) = dg , equation (4.9) can be written

as:



54

AVIAL ) s 3. ot o gy ) (4.10)

dt

In order to obtain an expression for the variance, < f a,p)> can be expanded

around <T> and <ps> :

: off _ o(f _
<fa<r,p)>=<[f a(r‘p)] (o)+{_(__a_('1"—,p))} (T—<T>)+[~(+a(r’p))} (p-<p>)>+
daT | (o) dp ©) -

az(fa('np))] (5-<5>)2> &

(T % 3 L{
& dp* ©)

2 oT?

<L {32( farp))
(o)

2
q:a_(_f:ag_p))} (T-<T>) (p-<p>)+0 [ (T-<T>3, (E-<E>)3]>
aTap (0)
(4.11)

Note that:
of of
f =0, —
[f] (0) T 3p
After expanding all the derivative expressions, and not including the error term of

(4.11), there results:
9 (arp)

(T-<T>)5 +
(0) _

<famp>=[ amp) @ <(T-<T>)>+

[a(a(r,p))} <(p-<p>)(T-<T>)>
P |

Substituting < f a,p)> in (4.10) gives

dVar (T) =2VM(T)[8(§TEP))

dt

__ [d
+2Cov(T,p){ e
op

(0)




Which is a nice expression for the variance as a function of the first derivative of
the point location equation. A similar procedure can be applied to the variance of

the snow density. This can be expressed as:

dVar (p)

vl 15T @>
- = 2( (5 -<7>)(%)

_ N do.
Now, by denoting g=(p -<p>) and brp) = % , the expected product can

be expanded in Taylor series around the spatial means. Simplifications due to the

factthat [g] (o) =0, 8__g =1and 8_§ = 0, will produce the following
ap aT
relationship:
0} — _[o(b —__[o(b
Va®) sy 5y [2LOTD)] L  gov (Tip) [20ER) (4.13)
dt : ap () dT (©)

4.1.3. EQUATION FOR THE SPATIAL COVARIANCE

By definition, the covariance can be written as,

dCov(T,p) d s
— =5 <(p-<p>)(T-<T>)> (4.14)

Operating on the RHS of (4.14) one can write,

4 [T B < 5] = (T T2 B) (1o &
dt[<Tp> <T>< p>] —<(T <T>) +<(p <p>)dt>

Letus call =(T -<T>), g= (p -<p>), arp=9L and b(r,p)=‘1d‘?ti , then
(4.14) can be expressed as:

dCov(T,p)

n = <f brp>+<g arp> (4.15)



By expanding each of the terms on the RHS of (4.15) around the spatial mean
values, there results,

A(fb - - A(fh
<fb<r,p>>=<[f ber.p)] o* —(——M)—)} (T-<T>)+ [_(_(_T_P.)l
(0)

T op ] (o>( PP )> i

l{aZ(fbm“p))} 1<y + L) GGy
) JoT? ) - op* ©

(T-<T>)(p-<p>)+0 [ (T-<T>)3, (5-<’5>)3]>
(0)

Applying the same considerations used in (4.11) yields:

ﬂ-b-f'—"’) 2 TeTs )% 4

(0)

<fbm,p>= [brp)] @ <(T-<T>)>+

(sl

} <(F-<T>) (P-<P>)>
P |©

which leads us to the relationship:

+ Cov (T, Pp) [ﬁ_‘“—'ﬂﬁ} (4.16)
(o)

<fbrp>= Var(T){a_(_big_._p)) -

(0)

In a similar manner, the second term on the RHS of (4.15) may be expanded

around the same mean spatial values:

0 _ 0 -
<g a(r,p)>=<[g a(r,p)] (O){ﬁiﬂﬂ} (T_<T>)+[_(_§_f_¥_(1‘,_p))jl (p-<p>)>+
T | op ©)
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1 .p) g 1 A(T,p) 2

Pl ———— (T-<T>)* + | ——————= (p-<p> +
<2{ 2 a_Zp © p-<p>)

2(gamo)] m s o g = =
——=—PJ (T-<T - O (T-<T)3 (p-<p>?
<[ 5 (o)( <T>)(p-<p>)+O [ (T-<D), (-<p>)7

Using the same arguments that allowed us to simplify the above equations, results
in

—_ [o(a = = [0
<ga<r.p)>=Var(p){—(&%mlL)+ Cov(T,p)[—(;%’@l]() (4.17)

Substituting (4.16) and (4.17) into (4.15), a relationship for the spatial covariance

leads to:
dCov(TP) _ yur(T) [a(bg,m) . Var(a)[a(“(_fv"))} ;
dt aT | (o M ]
_ _ [9 3(b
Cov(T,p){ (2p) |, 9 f’p’)} (4.18)
oT op (0)

The set of ordinary differential equations (4.7) , (4.8}, (4.12) , (4.13), (4.18)
constitutes a closed system depending on spatially averaged parameters. This
system of equations was originated from the dynamics of snowmelt expressed as a
point location process. '

4.1.4. FREEZING DEPTH

The freezing depth Z can be averaged over the snow cover area using the
same expansion method. Combining equation (3.37.¢) and (3.37.4), the
expréssion for Z can be written as:

Z=2(k1+k2552)'f
G,

= cT,p) | (4.19)
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Expanding Z around the spatial means:

———-—a ( C(I’p))} (T-<T>)+ [a——( C(E'p))} (p-<p> )> +
(0) (o)

Z>= +
< <[ C(T-P)] (0) T ap

2| 9T

?(can)] 7.7 2(can)] 5.
1 (T,p) B 2 1 (T,p) ) 2
< { (T-<T>)° + 2{ 852 (O)(p <p>) +

()

& (ca,p)
aT 9p)

(T-<T>)(p-<p>)+O[(T-<T? (5-<5>)3]>
(o)

That will give us the relationship:

= 19*( cp) 1 = |8 (cap)
<Z>= [cmp) (0)+lVar(T)[—-_—'—— + o Var(p) : +
2 oT? ©) 2 dp? ()
2
. (-T-,a[a_(_m (4.20)
9T dp) | (o)

4.2. SOLUTION TO THE MASS EQUATION

If there is no snowmelt, i.e., whenever <T> < 0°%C , the equations (4.7,
4.8, 4.12, 4.13, 4.18 ) can be solved for: <T>, <ps>, Var(T), Var(ps) and
Cov(T,Es). Once <§5> is known at the beginning and end of the time interval, the
mass equation (3.37.e) then becomes linear with respect to the spatially averaged

depth of the snowpack, <D>:

D> %<5s>+<55>%2=Pw(<Pt>'<E>‘<M=>) (4.21)

Expressing (4.21) in finite differences, it can be solved for <D> at the end of the
interval. If the solution of the equation system (4.7, 4.8, 4.12, 4.13, 4.18 ) results
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in <T> > 00C , then the snowmelt <M> is calculated from this equation system

for <T> =0 . The algorithm used in these calculations will be described later.
4.3. MODEL FORMULATION

The final formulation of the spatial approac_h is ol)tained taking
derivatives of ar,p), b,p) and c(1,p) with respect to T and p and substituting
these derivatives into equations (4.7) , (4.8) , (4.12), (4.13), (4.18) , (4.20). These
operations lead to large algebraic expressions. The equations obtained are
presented in Appendix A. _

It can be noticed that the point location equations are a particular case
of the spatially averaged equations system. In a point location situation the
variances and covariances are zero and the mean spatial parameters take the
point values. Consequently, the averaged system of equations is reduced to the
system given by equations (3.37) representing a point location process. On the
other hand, when the application is extended over an area, the spatial parameters
<T>, <ps>, Var(T), Var(ps) and Cov(T,ps), will adjust to the scale of the
process by taking values dictated by the fluctuations in time of the input
meteorological variables and by how these spatial parameters are related in the
physics of the melt process.

4.3.1. MODEL ALGORITHM

The calculation procedure is schematized in the flow chart of Figure
(4.1). The initial conditions are specified for <T>, <ps>, <D>, Var(T), Var(p,)
and Cov(T,ps). The energy balance is calculated using spatially averaged
meteorological data. This information may come from point location observations
or from any other means such as satellite information or mesoscale climatic
models.

The system of equations is solved using a Runge-Kutta numerical
method for each time interval. It is assumed beforehand that <M> = 0. If the
spatial snow temperature results in a positive value, then according to the
equation of state, <T> is fixed to 00C and the equation system is solved again for
<ps>, Var(T), Var(ps), Cov(T,ps) and <M>.

Using equation(4.20), the average snow freezing depth <Z> is calculated
. If <Z> is out of the interval (0 < <Z> < <D> ) then <Z> is forced to take the
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extreme admissible value of the interval, and <T> is recalculated by Newton
method applied to (4.20) . This new value of <T> is used to solve the equation
system for the final values of the spatial parameters in the time interval. Finally,
(4.21) is solved for <D> at the next time step (t+1).

Note that considering (4.6), <M> applies to the mean depth of SWE
corresponding to the area cover by snow. '

4.3.1.1. NUMERICAL SOLUTION FOR THE EQUATION SYSTEM

Most of the methods used for solving ordinary differential equations are
based on the Taylor series approximation which implies the differentiation of the
function.

However, the Runge-Kutta method succeeds in approximating the Taylor
polynomial, without taking derivatives. The basic idea is that functional values at
different values of time can be substituted for derivative values. Various
exploratory steps are taken from the current time location t = t; and solution
estimates T = Tj, and the function % = f(T,t) is evaluated at these nearby

locations. These estimates are combined in such a fashion that the sum must

agree with the Taylor's expansion of the solution, up to a certain power in step
size h. The successor estimate Tj;; is computed recursively from T; ,(i=0,1,....) by

the formula:

s
Tj+1 = Tj + h(z (0.1 ki)

i=1

where the terms k; are computed recursively according to:
i-1
k=f(t,T) and k=f| t+hBi, h{ Y Aimkm for i= 2,...,8
m=1

The stage number of the rule is determined by s that was chosen to be 4 which
gives a global error on the order of h?. The parameters ¢; , Bi, Ain were chosen

following the classical fourth order approach that gives the relations:
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k= (1, T)

k2=f(tj+%h, T +%hk1)
k3=f(tj+%h, T +%hk2)
kq=f( 1+ h,Tj+%hk3)

Tyy=T; +% (ki +2k; +2 kz+ky)

The obvious vector generalization of the univariate technique is adequate and
effective for solving simultaneous differential equation problems. Therefore the
methodology explained for a single equation was applied simultaneously for our 5
differential equations system. The evaluation of the time derivative functions is
supplied by an external function program.



CHAPTER V.
5. MODEL TESTING

The main difficulty in testing a spatial model is acquiring spatially
distributed data records. Meteorological data of air temperature, relative
humidity, radiation and wind veloéity are required at several sites of the area.
The areal average of these values are the inputs of the spatial model. -
Additionally, distributed observations of snowmelt, snow temperature and
snow density should be available in order to compare with the results obtained
by the spatial model (<T>, Var(T),<p>, Var(p) and <M> ). However, some of these
variables are not routinely observed. As a consequence, the model developed
in this study had to be tested with the regular information available for a
typical snow covered catchment.

The area selected for model testing was Scott Valley Basin. Most of the
information and data required from Scott Valley Basin were already compiled
in a previous study of the region by van der Heydt (1991). A careful analysis,
selection and screening of the observed data were performed in this study
with the aim of applying a point location snowmelt model to Scott Valley Basin
(it will be called Model L). The use of this set of data in the present research
for some of the model tests has facilitated the data collection task. Results
obtained by van der .Heydt (1991) also provided valuable information used for
comparison purposes with the presently developed model.

The study carried out by van der Heydt (1991) is based on the Kondo
and Yamazaki(1990) snowpack model. In this point location model, the entire
snowpack is treated as one homogeneous layer with average properties of
density, thermal conductivity and water holding capacity. Governing
differential equations are approximated by finite differences. The resulting
quadratic equations are solved analytically. The energy exchange estimations
are based on the energy budget approach.

The fact that the model developed in this study had to be tested by data
from few observation point location, forced us to prepare three different test
cases. The first one was directed to evaluate the model developed only as a point
location model. Since the point location model is a special case of the spatial
model, a point site simulation was made. The result from the developed model



was compared with observed snowmelt and also with the snowmelt and snow
temperature predicted by van der Heydt (1991).

The second case is a hypothetical one. Snow temperature and
snowmelt were generated at three sites of the Scott Valley Basin. The data
generated was utilized to calculate the arithmetical mean and variance of
snowmelt and snow temperature. These values were compared with the results
of the spatial model developed in this study.

The third case was an application of the developed spatial snowmelt
model to the entire Scott Valley Basin area. All the information available in the
catchment and near the catchment were used to obtain the required input. The

snowmelt predicted by the spatial model was compared with observations from -

five stations representatives of the area.

Although the validation of the methodology may not be conclusive,
by these three tests, an insight into model performance was obtained.

A brief description of the location and data are described below. The
detailed information can be obtained from van der Heydt (1991).

5.1. STUDY AREA CHARACTERISTICS

The Scott Valley watershed is a 1600 square kilometer basin located in
the northern California (Figure 5.1). The topography of the region is rugged,
having elevations of 2500 m at the peaks to 500 m at the basin outlets. Snow
accumulation occurs by storms coming from the Pacific during the winter
season. Snowmelt takes place during interstorm periods and in the spring

season.
5.2.1. SNOW WATER EQUIVALENT INFORMATION (SWE)

There are two snow pillow sites within the basin at the southern end
of the watershed, namely Middle Boulder 3 and Scott Mountain. In addition a
group of three observation point sites at Peterson Flat, Mumbo and Big Flat are
out of the basin, but close enough to provide valid information for the study
area. At these five stations cumulative precipitation are also recorded. Data are
registered by sensors that transmit the signal at periodic intervals via the
Geostationary Operational Environmental Satellite to a central computer
facility in Sacramento (Suits, 1986).
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According to Suits (1986), diurnal fluctuations of SWE readings are a
result of temperature induced effects, lose of contact between the sensor and
the snow and sensitivity of the sensor to changing snow conditions. These
fluctuations make a determination of the 3 hour incremental melt impossible.
It is convenient therefore to use incremental daily SWE as a representative
measure of the snow depth variations.

5.2.2. HYDROMETEOROLOGICAL DATA

Three remote automated weather stations (RAWS) in Scott Valley
Basin measure hourly relative humidity, precipitation, air temperature wind
speed and direction, and several parameters used to assess fire danger. These
three stations are located at Collin's Baldy (1670), Quartz Hill (1200) and
Callahan (500). Additionally, at Scott Mountain air temperature is measured
and recorded every 3 hours.

5.2.3. SOLAR RADIATION

Total global solar radiation is monitored at Red Bluff by Pacific Gas
and Electric company. A spectral piranometer measures total horizontal solar
radiation yielding 30 minute average values. Fractional sky cover and cloud
base elevation are recorded at Redding, Siskyou and Montague airports.

The short wave radiation data (sw) used was prepared by van der
Heydt (1991) who calibrated a radiation model using Red Bluff solar radiation.
The calibrated atmospheric transmissivity parameter was found to be 0.68. This
is in agreement with Williams (1972). Subsequent adjustment to the basin was
made possible by using Redding and Montague airport information of
cloudiness. The albedo was computed by using an exponential decay function
of albedo with time since the last snowfall (equation 2.6).

5.3. CASE 1: POINT LOCATION SIMULATION

The first test was directed toward the validation of the formulated

methodology applied as a point location model. By setting the variances and




covariances to zero and considering <T> and <p> as point location variables,
the result of the system will correspond to a point location solution.

The simulation period chosen is April, 6-19 of 1986 in which no snow
accumulation occurred. The model was applied to the Scott Mountain site. For
this particular location, most of the snowmelt occurred during April, 6 to 19.
By April 19 snow depth had decreased from 39 cm to about 2 cm. The zero time
for the simulation corresponds to April 6 at 4 AM. A 15 minute interval was
used according to the data available, not requiring interpolation of the
measurements.

The parameter values used in the model testing are detailed in the
Appendix B. The input data of air tefnperature, relative humidity, wind, short
wave incoming radiation and initial values are also plotted in the Appendix B.

5.3.1. SIMULATION RESULTS

In Figure 5.2, the values of snow temperature during the first S days
of the simulation period, calculated by the model developed in this study are
compared with the results predicted by Model L (van der Heydt, 1991). A
classical periodic shaped curve was obtained as a result of the incoming
energy fluctuations during the day-night cycle. Although there are some
differences in curve shape and magnitudes of temperature at certain points in
time, there is a significant agreement between two models.

67




|
6

Calc. T
- e

-8t ]
[ Cale. T ]
-10
[ Model L ]
-12 T 1 1
0 20 40 60 80 100 120 140 160
HOUR

Figure 5.2 Surface snow temperature comparison.

In Figure 5.3, the snowmelt values, resulting from calculations
performed by the model at 15" intervals, are shown. Figure 5.4 shows the
comparison of daily cumulative snowmelt values. According to Figure 5.4 the
simulation of the observed values at Scott Mountain site is satisfactory.

The discrepancies between the snowmelt calculated by the developed
model and the van der Heydt predictions can be explained by several factors.
In Model L equations are solved analytically, whereas in the spatial model a
numerical solution is obtained (note that the spatially averaged equation
system can not be solved analytically). This may be the reason for the slightly
longer melting periods of Figure 5.2, that will contribute to higher snowmelt
cumulative yields. During the melting periods, short wave radiation and
turbulent transfer of heat to the atmosphere, dominate the energy balance. In



the turbulent transfer process, the values of the parameters involved may be
different in the models compared, increasing the snowmelt calculated by the
spatial model.
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Figure 5.3 Calculated snow melt at 15 min. interval.

The general agreement among the two models and observed data
confirm that the original point physics representation of the melting prbcess
is reasonably correct and the assumptions and simplifications made in the
procedure are acceptable.

In summary, it can be said that based on the results obtained from the
data available, the developed model performed satisfactorily as a point location
simulation model.
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Figure 5.4 Comparison of snowmelt calculated by the developed model in its
point location form (Calculated N),observed, and melt estimated by Model L.

5.4. CASE 2: THEORETICAL APPLICATION

To test the spatial model it is important to compare calculated areal
mean snow temperature, snow temperature areal variance and mean snowmelt
with corresponding observed quantities. However, only snowmelt is actually
observed in the Scott Valley Basin. Consequently, a simulation of point location
snow temperature was performed at three locations of Scott Basin by utilizing
the model developed in this study (as a point location model). Meteorological
data for air temperature, relative humidity, wind speed and solar radiation
were available for three sites at Callahan, Collin's Baldy and Quarz Hill. The
simulated snow temperature and snowmelt at these threelocations were
utilized to calculate the spatial arithmetic average of T and M, and the variance
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of T. Although these values were simulated, we will call them hypothetically
"observed" average T and M and "observed" variance of snow temperature.

On the other hand, the averaged values of air temperature, relative
humidity, wind velocity and short wave radiation at these three locations were
then used as input data to the spatial snowmelt model in order to estimate <T>,
<M> and Var(l). Finally, calculated spatial parameters and those "observed"
ones were compared.

Figure 5.5 represent the model calculated snowmelt at Callahan,
Collin's Baldy and Quartz Hill. The initial depth for the snow cover was assumed
to be 39 cm for these 3 locations. The parameter values used for the
calculations are similar to those presented in Appendix B. Similarly, the
simulated snow temperature at these three locations, or "observed" snow

temperatures are shown in Figure 5.6.
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model at 3 locations of Scott Valley Basin.
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Figure 5.6 Snow temperature calculated at 3 locations of Scott Valley

Basin.

In Figure 5.7, the areal mean value of snow temperature, <T>,
obtained through the spatial model is compared with the "observed"
temperature. Correspondingly, in Figure 5.8 calculated and "observed"
snowmelt are compared. In both cases there is good agreement. There is no
"calibration parameter" in the model. However, the initial values can be

adjusted within a certain interval. In this case the initial conditions were:

I>=-2.0
Var(T)= 4.0
>=0.35

Var( p) = 0.001
Cov(p,T) = 0.0
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Analyzing the performance of the developed model, it was noticed
that the effects of the initial values of < T>, Var(T), 9>, Var(p) and Cov(p,T)

were very different. While the initial value of <T> influenced the first daily
cycle, the initial value of < p> affected the whole calculation period. From
Figure 5.9 it can be seen that <p> does not have the repeating pattern shown
by <T> in Figure 5.7. On the contrary, the smooth decay of < p> is mostly due to
compacting through time. This affects the dynamics during all the period,

which is in correspondence with the nature of snowmelting process. In Figure
5.9, the tiny deviations of <p> from the main exponential tendency of the

curve is due to variation in <T> and can be barely noticed. The exponential
dependence of <p> on <T> expressed in equation (3.37.d), is manifested when
the same temperature persists for an extended period of time. The value of <p>
is also sensitive to Var (p) that affects the rate at which < p> changes. The
tendency of Var (E) is to decrease with time, indicating that the compacting
effect tends to cause a more homogeneous snow cover density. The range of
plausible values for Var (p) is of the order of 0.001 gr/cm3 hr.

The temperature variance curves displayed in Figure 5. 10, show some
differences in the magnitude of the peaks. The Var (T) is very sensitive to the
initial conditions and, perhaps, there exist different combinations of initial
values that may yield a better fit. Another consideration is the number of
points location from which the "observed" variance was estimated. Three sites
is a low sample number. Also they may not be completely representative of the
watershed or the area covered by the input data. However, the shape of both
curves, tendency and location of the peaks are in agreement.

The covariance parameter has a fluctuating pattern which favors the
determination of the initial value (Figure 5.12). A test run with the = Cov (p,T)=0
as initial value will show the magnitude and pattern from which a better
initial value can be estimated. Although the values taken by the covariance
are low in magnitude, they affect the dynamics. The covariance may be
ignored in the perturbation procedure, approximating the snowmelt physics
equations by only considering the variance terms. However, in that case
(setting the Cov (p,T) =0 and ignoring the equation for the covariance) it was
seen that stability problems occur, causing the Var (T) to take negative values

which in turn leads to divergence problems.



The discrepancies observed between the curves in Figure 5.8 happen
mainly at the beginning and end part of the melting cycle. The reason for this
may be related to the assumption that melts occur only when <T> =0. This is true
at a point location scale but may not be true at areal scale. Some snowmelt can be
expected even when <T> is below freezing, especially when the mean temperature
is close to the freezing temperature. This assumption could underestimate the
cumulative snowmelt. '
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Figure 5.7 "Observed" versus calculated Spatial Snow Temperature
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Figure 5.8 "Observed" (Obs. Melt) versus model calculated
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Figure 5.12 Calculated spatial covariance of snow density with snow
temperature.

5.5. CASE 3: SPATIALLY AVERAGED ESTIMATIONS AT SCOTT VALLEY

A more realistic application was carried out in order to test the model
performance. All the information available at Scott Basin area were used to
compare observed areally averaged snowmelt with the areal mean snowmelt
calculated by using the methodology developed in this study. The developed
spatial model was loaded with averaged meteorological data of the basin and
results were compared with areally averaged observed snowmelt of the area.

The calculation period used was again from April 6 at 4 AM to April 18
at 12 PM and the time interval was fixed to be 15 minutes. In Table 5.1, the

80



sources of the input data are indicated. And in Appendix C the input data

series, used for the study period, are displayed graphically.

Averaged variable

Data source

Observations

Air Temperature
Ta

Scott Mountain, C. Baldy,
Callahan, Q. Hill

Readings at every 3 hr
linear interp. at 15 min.

Relative Humidity

Scott Mountain, C. Baldy,

Q. Hill

RH Callahan, Q. Hill

Short Wave Rad. Red Bluff Adjusted to Scott Valley Basin
SW

Wind Speed C. Baldy, Callahan,

SWE

Snow water equiv.

Scott Mountain, Peterson
Q. Hill, M. Boulder

Negative readings eliminated
Daily accum. used

Table 5.1. Scott Valley Basin data used in the model.

The variability of the observed areal average snowmelt can be

noticed in Figure 5.13. Four out of five stations present similar values while

Middle Boulder exceed the others significantly in magnitude. Given that we

don't have any information on how representative these observation sites are

of the Scott Valley Basin area , Middle Boulder was included in the averaging

with the same weight as the other stations.
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Figure5.13 Measured snow melts at 5 stations in the study area.

5.5.1. RESULTS

Several runs were performed in order to find the best combination of
initial values to fit the daily cumulative observed snowmelt. In the calibration
process, emphasis was put on initial conditions rather than on the parameters
values such as bulk turbulent transfer De and Dh, albedo coefficient, and snow
water content Wo. Much can be said about the parameterization of the
snowpack properties and the energy fluxes. The parameter values can always
be improved, depending on the accuracy and density of the input data and
observed output variables. This is not a particular problem of the developed
model, but a common feature of any physics-based, depth averaged, energy
budget snowmelt model. However, we will concentrate on the results related to
the spatial features of the model, the central topic of this research.
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On the other hand, more information about atmospheric conditions
and snow cover state (reflectivity, grain size, thermal conductivity, etc.) is
needed to physically base the estimation of these parameters. Consequently,
the parameter values were taken from the literature.

During the calibration runs, it was observed that increasing the
initial value of <p> produces lower peaks in <T> and Var(T). An increase of
density is associated with a quadratic increase of thermal conductivity. In a
more conductive medium, a deeper snow layer becomes active keeping the
fluctuations in temperature within a smaller range. As a consequence, can be
expected a decrease in the Var (T) when snow density decreases.

It was also observed that Var (T) is very sensitive to initial values of
Var (E) . Increasing Var (p) by 0.001 results in high peaks of Var (T). This effect
again seems to be controlled by the relation between E and A, which turns out
to be very important in the spatial dynamics. By adjusting the initial values it
was possible to reproduce fairly well the observed snowmelt.

In Figure 5. 14, the calculated and observed areally averaged daily
cumulative snowmelts are displayed. According to this figure there is a good
agreement between calculated and observed daily melts. However, there is an
underestimation of the calculated values. The observed melt during the study
period sums to 49 cm whereas the calculated value is 46 cm. It is difficult to
find a methodological explanation for the differences because-several factors
may be contributing :

. The assumption stipulating that snowmelt occurs when <T>= 0°C
(explained in section 5.4)

. Measurement errors. The variability of observed snowmelt is
mainly given by one site (Midlle Boulder) which may deviate the
observed average melt upward beyond its real value. |

. Incorrect parameter values.

There is a similar tendency between incoming energy and daily
melting. Figure 5.15 represents the total energy balance (G1+ sw). It can be
noticed that the positive net balance during this period yields an important
quantities of snowmelt. Short wave radiation and air temﬁerature during the
period are the main contributing factors for the snowmelting. At the 9th
simulation day (~190 hr) the snow temperature (Figure 5.16) is maintained at




09C during the night. This is a particular long period where the snow stayed at
the same temperature altering the compacting rate, and producing a visible
effect in the snow density curve ( Figure 5. 18).

The Var (T) has a fluctuating behavior in correlation with the snow
temperature as shown in Figure 5.17. According to Figure 5.17 it can be
expected a higher degree of space homogeneity in the snow cover temperature
at high levels of temperature than at low levels. In other words, maximum
homogeneity can be achieved about noon time during the melting season. It
can also be perceived that the peaks of Var (T) diminish with time (Figure 5.17),
which may be related to the variation ‘of snow density. The increase of  <p> due
to compacting is associated with a quadratic increase of <A> by equation
(3.37.c) that produces smaller fluctuations in the Var (T).

The behavior of CO (p,T) is dictated mostly by the spatial variation of
temperature which is relatively larger with respect to the spatial variation of
density. In Figure 5.20, a decay can be observed in the magnitude of the peaks
analogous to the behavior of Var (T).

According to Figure 5.14, the spatial model is capable of simulating
the areal average snowmelt for the conditions presented in Scott Basin.
Eventually, a better fit can be obtained by developing a parameter estimation
scheme which will be based upon topography data, satellite information, wind
profiles, stability parameters, vegetation, etc. However, the information
available and used in this model are the usual data a hydrologist would have
for any real application.

Additionally, a comparison of snowmelt resulting from the spatially
averaged approach and from the point location approach was made. To
accomplish this purpose, the same input data, used to calculate <M> were also
applied to estimate M at a point location by considering the variance and
covariance terms as zero. The point location approach represents the '
traditional way in which the snowmelt is estimated by using point location
physical relationships under areally averaged inputs.

In Figure 5.21 observed, spatial model calculated and point-location
model (with areally averaged inputs) calculated areal mean daily snowmelt
values can be compared. The accumulated value for "point M" during the
simulation period sums to 39 cm which is below the other two cumulative
values (46 and 49). The dissimilar distribution of these daily values with time
can be observed. Disagreements in calculated snowmelts by these two methods
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are mainly due to differences in the calculated melting period during a day.
The difference in melting period duration as a result of applying point
location and spatial average methods is not easy to explain because this
difference depends on the spatial variability of <T> and <p> throughout the
period of simulation. In order to visualize the causes of these differences, an
analysis of the energy equation is made in the next section.
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Figure 5.14 Comparison of measured averaged snowmelt (Obs. Melt)
and model calculated areally averaged snowmelt (Calc. Melt).
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Figure 5.15 Net energy balance resulting from the averaged input

data in Scott Valley Basin for the study period.
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Figure 5.16 Areal average snow temperature for Scott Valley Basin.
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Figure 5.17 Areal averaged temperature variance for Scott Valley Basin.

88




Snow density

0.41

0.40

0.39

0.38

0.37

0.36

0.35

40 80 120 160 200 240 280 320
Time (hour)

Figure 5.18 Areally averaged snow density for Scott Valley Basin.
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Figure 5.19 Snow density areal variance for Scott Valley Basin.
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5.5.1.1. CONTRIBUTION TO THE SPATIAL TEMPERATURE VARIATION

In order to understand the role of the spatial parameters in the average
model, an analysis of equation (4.4) was made (see Appendix A). This energy
equation estimates the mean snow cover temperature rate and also expresses the
energy exchanged by the pack. The structure of equation (4.4) can be expressed
as:

d% = Point Equat. + o Var(T) + B Var(p) +8 Cov(p,T) (5.1)

The evaluation of each term of (5.1) was done during the running of the spatial
model for the application to Scott Valley Basin. For the sake of clarity, the
following analysis was done over the first 48 hours of the simulation period. Each
term of (5.1) was expressed as a part of the total change of <T> which occurred
during the time interval (15 minutes).

In Figure 5.22 the areal mean snow temperature <T> for the selected
period of 48 hours is presented as a reference. Figure 5.23 shows the relative
contribution (in absolute values) of the four terms of equation (5.1) to the change
experienced in <T> during the 48 hours period. These contribution are expressed
as portions between 0 and 1 of (d<T>/dt). At a first glance the importance of
spatial variability in the snow cover dynamics can be seen . Note that the
influences of first (point equations) and second (Var(T)) terms with respect to the
Var(p) and CO((p,T) terms, are greater.

According to Figures 5.22 and 5.23, when <T> < 0 , the contribution of
the term involving the Var (T) is very important. However, when <T> =0 the
point location equation dynamics can explain most of the changes of <T> (that is
actually small). The transition from <T> <0 to<T>= 0 appears to be influenced
by the spatial variance. Therefore, one of the differences between the point
location and spatial average approaches seems to be the lengthening and
shortening of the melting period. This should give a different amount of
snowmelting and/or a different distribution of this amount over time.

The relative contributions of Var(p) and CO((p, T) are shown in Figure

5.25 and Figure 5.24, respectively. According to Figure 5.24, the influence of the
spatial variability of p is maximum during the melting periods. Var(p) fluctuates

within a small range, showing two cycles during the day. When <T>= 0, the



variation of Var(_p-) may be due to the changes in snow cover depth as a

consequence of snowmelt that takes place at that temperature. When <T> < 0
during the night, fluctuation occurs due to the compacting of the snow cover
controlled by the decreases in snow temperature.

From Figure 5.23 it can be concluded that the spatially averaged
snowmelt dynamics is given by a different physical structure than the one
described by the point location equations. Therefore, different results should be
expected.
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Figure 5.22 Calculated areal mean snow temperature for 48 hr period
at Scott Valley watershed.
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CHAPTER VL
6. CONCLUDING REMARKS

In this thesis a physics-based model of the snow cover is developed.
The derived spatially averaged equations were based on the conservation of
mass and energy at a point location. These equations relate the thermodynamic
processes occurring in the snowpack with the energy fluxes exchanged with
the surroundings. The spatially averaged equations were developed under the
fundamental assumption that the snowmelt process is spatially ergodic over an
area. ‘

Each flux of the energy balance was estimated on the basis of the
physics involved in each transfer mechanism. A linear expression for the
energy balance was obtained as a function of the snow temperature. The input
meteorological data required by the model for the energy budget estimation
are: air temperature, relative humidity, wind velocity and short wave
radiation.

In order to average the point location equations over the snow depth,
- a model for the snowpack was adopted. The main assumptions were: a) a linear
relationship between snow temperature and freezing depth; and b) the
snowpack includes two layers separated by the freezing depth. The upper
layer is composed of dry snow whereas the lower layer holds a constant
amount of water, Wo. Using these assumptions, the point location equations
were integrated over the snow depth using the Leibnitz rule of differentiation.
An equation for the compacting effect of the pack was included in the depth-
averaged equation system (DAE). The compacting or density variation of the
snowpack was assumed to depend on the mechanical pressure and temperature
variations of the snow.

The DAE system was then averaged over the snow cover area. The
technique used in this averaging process relied on the Taylor series expansion
of the DAE around the spatial mean snow temperature and spatial mean snow
density. This technique is based upon the ergodicity of the spatial snowmelt
process. Snow temperature and snow density were considered to be the better
descriptors of snowmelt variability in space. A closed sysfern of ordinary
differential equations was obtained. These equations represent the
thermodynamics processes occurring in the snow cover and are functions of
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the first and second spatial moments of p and T. The equation system was
solved by using Runge- Kutta numerical technique.

Scott Valley Basin data was used in order to test the model. The spatial
model results were compared with observed daily snowmelts. Based on the
comparison, the model performed satisfactorily. It was capable of reproducing
the observed snowmelt at a point [ocation (Scott Mountain) and at the basin
scale as well. At the basin scale, the areal average snowmelt calculated by the
model was compared with the observed areal average snowmelt from 5
observation point locations.

The following conclusions and recommendations for future
investigations may be stated:

1. The results of the spatial model developed in this study are in agreement
with observed data. The magnitude and tendency of the measured daily
snowmelt (basin averages) are reproduced satisfactorily by our spatial model.
Additionally, the developed model performs well as a point location model
when its results are compared with observed point location SWE data and with
the results from another point location model. Therefore, the model performs
well, independently of the scale of application, i.e., either point location scale
and spatial areal scale.

2. There is evidence that the spatial model captured the spatial variability of
the snow cover. Spatial snow temperature variance from the developed model
agreed with the temperature variance estimated by point location simulations.
The spatial model includes the spatial variability of snow témperature and
snow density in the snow cover. This is an important departure from the
traditional point location application. As a consequence, results obtained with
the spatial average model differ from those obtained with the traditional point
location model. Better concordance with areal observations is obtained with
the spatial model.

3. The methodology which was used to develop a spatially averaged expression
for snowmelt in this research can be applied to other physical processes
involved in the hydrological sciences.



4. Although the results of the spatial model are in agreement with observed
data, from a rigorous point of view, the model should also be tested over a wide
range of snow cover and climate conditions. In addition, precise observed
hourly SWE data is necessary for comparison with model results at time scale
appropriate for the snowmelt dynamics. A large number of observation points
that provide meteorological and snow cover data are essential for a conclusive
validation of the approach. Intermediate scale of application between point
location and basin areal scale is necessary to evaluate the independence of the
model on the scale of the simulation.

5. The averaging procedure applied to the snowmelt processes allow for
modifications in the method used to estimate the energy balance. There is a
wide range of available energy budget techniques, depending on which
components of the balance are measured directly and which empirical
equations are used to estimate the others. Depending on the purpose of the
application and on the available data, other techniques may be more adequate
than the energy budget method included in the model developed in this
research. For example, temperature index approach may be used in the model
when only air temperature measurements are available. Additionally, satellite
imagery and mesoscale climatic models can be very useful elements by
providing spatial input for the model. The spatial approach could then be used
in the analysis of snowmelt variations under the hypothesis of climate

changes.

6. The movement of water within the snowpack is neglected in this model. The
assumption of instantaneous release of water out of the pack is unrealistic. A
spatial expression for the flow moving through the snow should be added to
the model. The flow of water through the snow is subject to properties that
depend on the metamorphic state of the snow. This makes it difficult to
estimate the flows. However, this model makes it easier to solve the problem
because it calculates a mean freezing depth which separates dry and wet snow
layers. The freezing depth defines a boundary condition for the water that
flows in the wet layer. )

7. Future research is necessary to determine when, where, and how the snow

cover area should be divided in order to make better use of the model.
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Although the equations are expressed as functions of the spatial variability of
the main physical properties of the snow cover, some differences in the
characteristics of the area may justify subdivision of the study area. Seasonal
and perennial snow covers are subject to different rates of compacting and
different density-heat conductivity relationships. Climétic differences on the
windward and leeward sides of a mountainous system should also be
considered. Even short wave radiation captured by the snow may be very
dissimilar from one snow cover area to another due to differences in albedo,
exposition or vegetation. Therefore, it is important to establish a criterion for
considering which characteristic should be preserved in a "homogeneous
unit" of the snow cover area. Obviously, a division of the study area is also
subject to the availability of data representative of each partition.
Nevertheless, with the same amount and quality of information, the
spatial model provides better results than the traditional point approach.
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Appendix A.

The derivatives of arp), br,p) and ¢(r,p) with respect to T and p as

defined in Chapter III were substituted in equations (4.7) , (4.8) , (4.12) , (4.13),
(4.18) , (4.20) . The expressions obtained are displayed in the following page.
This formulation may be simplified by algebra manipulations. However, it is
presented in a way that can be related to the structure of the expressions
developed in Chapter IV. For the sake of clarity some abbreviations were

adopted:

cdl=2ATcl +BT2cl-Ac2
A = (k1 + k2ps2)

c1= specific heat of ice (Cp)
c2=WolLf



(A+BT)2 (A+BT+sw)

d<T>/dt = &
2 cdl A ps
kK2(A+BT)Z (A+BT+sw)
0.5 Var(ps) ( +
cdl ps A 2

4psk22 (A+BT)2 (A+BT+sw)

cdlA 3
(A+BT)2 (A+BT+sw)
) +
cdl A pg 3
Bk2(A+BT)?2 B(A+BT)2
cov (TPs) ( ) -
cd1 A 2 2 cdl A ps 2

2Bk2(A+BT)(A+BT+sw)

BA+BT)(A+BT+sw)

cdl A 2

K2(A+BT)2 (2Acl+2BTcl)(A+BT+sw)

cd1 A pg 2

cd1 2 )2

(A+BT)2 (2Acl +2BTcl) (A+BT+sw)

2Acdl 2 pg 2

2B2 (A+BT) B(A+BT)2 (2Acl +2BTcl)

0.5 Var(T) ( -

cdlAps A ps cd1 2

B2 (A+BT+sw) Bcl(A+BT)2 (A+BT+sw)

cdl A ps A ps cd1 2

(A+BT)2 2Acl+2BTcl)2 (A+BT+sw)

A ps cdl 3

2B(A+BT)(2Acl+2BTcl) (A+BT+sw)

A ps cdl 2
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(A+BT)2 (kl +3k2 ps 2) (A+BT+sw)

d Var(T)/dt = -cov (T, ps) ( -
 cdlA2pg2
2ABc2sw+3Bc2A24+2clswA?2
Var(T) (A+BT) ( +
(A ps cdl 2)

2c1A3+3ATc2B2-3Ac1B2T2

(A ps cdl 2)

c1B3T3
. |
(A ps cd1 2)

0.667 D EXP (~(T c ps) - kO ps)
d<pg>/dt = Var(ps) ( -
nu

1.33 D kO ps EXP (<(T c ps) - kO ps)
) +

nu

2 D EXP («(T cps) - kO ps) Ps 2
+

3 nu

0.33 D EXP (<(T ¢ ps) - kO ps) cps 2 ps 2
Var(T) o+
nu

0.33 D EXP (-(T ¢ p) - kO ps) kO 2 ps 2

Var(ps) .
nu

2D cps Ps EXP (-(T ¢ ps) - kO Ps) (2 - KO ps)
cov (TPs)

3 nu
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B -4 D cps EXP ((T ¢ Ps) - kO Ps) Ps 2
d Var( pg)/dt = cov (T,ps) e
3 nu

4D ps EXP (((Tcps)-kO Ps) (2-kO ps)
Var(ps)

3 nu

-2 D cps EXP («(T ¢ ps) - kO ps) ps 2
d Cov/dt = Var(T) *
3 nu

k2(A+BT)2(A+BT+sw) (A+BT)2(A+BT+sw)

Var(ps) (- = )£
cd1 ) 2 2 cd1 A ps 2
4 D ps EXP ((T ¢ ps) - kO Ps)
cov (TPs) ( &
3 nu
2DKOEXP ((Tcps)-kO ps) ps 2~ B(A+BT)2
+ +
3nu - 2cdlA ps

B(A+BT)(A+BT+sw)

cdl A ps

(A+BT)2(2Acl1+2BTcl) (A+BT+sw)

2 A ps cdl 2
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2.T k2 2Tkl +k2ro0)
<Z>= Var(s) - +
A+BT A+BT
-4 BTk2ro 4 k2 ro
cov ( - —— )+
(A+BT)2 . A+BT

4B T2 (k1 + k2 ro2) 4B (k1 + k2 ro?)
0.5 Var(T) ( - )

(A+BT)3 (A+BT)2

When the freezing depth takes minimum or maximum value allowable, the
mean snow temperature is calculated from (4.20) as we mentioned in
ChapterlV. In order to use Newton's method the derivative of < Z > with respect
to T must be specified:

-2. B T Var( ps) k2 2. Var(ps) k2 2BT(kl+k2r0)
d<Z>/dT = + - +
(A +BT)2 KABT (A+BT)2
2(k1+k2r02) 8B2 Tk2ro 8 Bk2ro
s o JGONF = ) %
A+BT (A+BT) (A+BT)2

" J12B3 T(kl+k2ro2) 12BZ (k1 +k2ro?)
0.5 Var(T) ( + )

(A +BT)4 (A+BT)3
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APPENDIX B
PARAMETER VALUES

The value given to the parameters of the model was related to the
conditions existing in Scott Mountain during the period April,. 6-19.

1- Emissivity of the snow surface, &= 0.99 -

2- Water content of snow at 0°C, Wo= 0.10 . This value is suggested by Kondo
and Yamazaki (1990). '

3- Bulk coefficient for turbulent transfer, Dy = 0.0030 andD.= 0.0015 (Gray and
Male, 1981) '

4- Effective thermal conductivity coefficient, k; = 0.25 and kj = 25 ., values
corresponding to De Vaux equation (units: cal/cm h K).

5- Densification coefficient, T, =20 cm h andk, = 21 cm3/g (Anderson, 1976)

INITIAL VALUES

=-10C
Var(T)=0
ps = 0.38 g/cm3
Var(ps) =0
Cov(ps,T) =0
D = 39cm

INPUT DATA
The observed data of air temperature, relative humidity, wind speed

and incoming solar radiation are presented in the following graphs. Time is
expressed in hours since April 6, 1988 at 4 AM.



Air Temp. (C)

ki
o

25

20

-t
o

[ . |

! *I\ /IRAA

JAMid /\J\;\ |

V

0 50 100 150 200 250

Hour
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Figure B.2 Relative Humidity used for snowmelt calculation at Scott
Mountain, from observation at Collin's Baldy.
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Figure B.3 Hourly average wind speed of values observed at Collin's
Baldy, Callahan, and Quartz Hill

118



w R (6)1
o o o

Short Wave Rad.
(cal/lcm h)
N
o

-
o

-10

LR

T T T
=
_.#;“

LB L]
Fo————
LA L 1

L B B
— ]
P —
e —
=y
4 A

L B
_‘_,_F—"
———
o

e

| B

o

50 100 150 200 250 300 350

Hour

Figure B.4 Short wave incoming radiation based on Red Bluff
observations.

119



120

APPENDIX C

Figures C.1 and C.2 shows the air temperature and relative humidity used in the
Scott Basin snowmelt simulation (case 3). The data of solar radiation and wind
speed are the same used in the theoretical case 2, and are displayed in Figure
B.4 and B.3 of Appendix B.
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Figure C.1 Averaged air temperature from observations at Callahan,
Collin's Balby, Quartz Hill and Scott Mountain, during April 6-19, 1989.
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Figure C.2 Averaged relative humidity from observations at Callahan,

Collin's Balby, Quartz Hill and Scott Mountain, during April 6-19, 1989.
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